×

On generalized Fermat Diophantine functional equations in \(\mathbf{C}^n\) and Picard type theorems. (English) Zbl 07861425

Summary: This paper concerns entire and meromorphic solutions of the generalized Fermat Diophantine functional equations \(hf^p + kg^q = 1\) in \(\mathbf{C}^n\), where \(h,k\) are meromorphic coefficients in several complex variables and \(p,q \geq 1\) are integers with \((p,q)\neq (1,1)\). As applications, we determine when entire solutions of the simple-looking functional equation \(f^p + g^q = 1\) in \(\mathbf{C}\) reduce to constant and then apply the result to show two well-known Picard type theorems in a direct manner.

MSC:

32A15 Entire functions of several complex variables
32A20 Meromorphic functions of several complex variables
32A22 Nevanlinna theory; growth estimates; other inequalities of several complex variables

References:

[1] H. Cartan,: Sur les zeros des combinaisons linaires de p fonctions holomorphes donnes, Mathematica (Cluj), 7, 5-31 (1933) · JFM 59.0327.03
[2] I.N. Baker, On a class of meromorphic functions, Proc. Am. Math. Soc., 17, 819-822 (1966) · Zbl 0161.35203
[3] F. Gross, On the equation f n + g n = 1, I, Bull. Am. Math. Soc., 72, 86-88 (1966) · Zbl 0131.13603
[4] F. Gross, On the equation f n + g n = 1, II, Bull. Am. Math. Soc., 74, 647-648 (1968) · Zbl 0159.20201
[5] Q. Han, On complex analytic solutions of the partial differential equation u m z1 + u m z2 = u m , Houston J. Math., 35, 277-289 (2009) · Zbl 1161.32022
[6] W.K. Hayman, Picard values of meromorphic functions and their derivatives, Annals of Mathematics, 70, 9-42 (1959) · Zbl 0088.28505
[7] A.V. Jategaonkar, Elementary proof of a theorem of P. Motel on entire func-tions, J. Lond. Math. Soc. 40, 166-170 (1965) · Zbl 0134.05403
[8] D. Khavinson, A note on entire solutions of the eikonal equation, Amer. Math. Monthly, 102, 159-161 (1995) · Zbl 0845.35017
[9] B.Q. Li, On certain functional and partial differential equations, Forum Math., 17, 77-86 (2005) · Zbl 1173.32303
[10] B.Q. Li, On Fermat-type functional and partial differential equations, The Mathematical Legacy of Leon Ehrenpreis, Springer, Milan, 209-222 (2012) · Zbl 1247.32007
[11] B.Q. Li, On Picard’s theorem, J. Math. Anal. Appl., 460, 561-564 (2018) · Zbl 1386.34141
[12] B.Q. Li, An equivalent form of Picard’s theorem and beyond, Canad. Math. Bull., 61, 142-148 (2018) · Zbl 1388.30031
[13] B.Q. Li and F. Lü, On entire solutions of a Pythagorean functional equation and associated PDEs, Complex Anal. Oper. Theory, 14, Article number: 50 (2020) · Zbl 1447.32006
[14] B.Q. Li, On certain functional and partial differential equations, II, Complex Anal. Oper. Theory, 15, Article number: 82 (2021) · Zbl 1471.32002
[15] B.Q. Li and L.Yang, Estimates on partial derivatives and logarithmic partial derivatives of holomorphic functions on polydiscs and beyond, J. Geom. Anal., 31, 7333-7351 (2021) · Zbl 1477.32003
[16] H. Milloux, Extension dun thèorème de M.R. Nevanlinna et applications, Act. Scient. et Ind., 888, (1940) · Zbl 0026.31601
[17] P. Montel, Lecons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 135-136 (1927) · JFM 53.0303.02
[18] E. Picard, Sur les fonctions entières, C. R. Acad. Sci. Paris, 89, 662-665 (1879) · JFM 11.0268.01
[19] E.G. Saleeby, Entire and meromorphic solutions of Fermat type partial dif-ferential equations, Analysis (Munich), 19, 369-376 (1999) · Zbl 0945.35021
[20] N. Steinmetz, Nevanlinna theory, normal families, and algebraic differential equations, Springer-Verlag, (2017) · Zbl 1381.30002
[21] A. Vitter, The lemma of the logarithmic derivative in several complex vari-ables,Duke Math. J., 44,89-104 (1977) · Zbl 0361.32003
[22] Q. Wang, L.W. Liao and W. Chen, On Certain Fermat Diophantine Func-tional Equations in C 2 , Comput Method Funct Theory, 23(1),87-100(2023). · Zbl 1511.32001
[23] Q. Wang, Q. Han and W. Chen, On generalized Fermat Diophantine func-tional and partial differential equations in C 2 , Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116, Article number:96 (2022) · Zbl 1487.32016
[24] L. Yang, Value distribution theory, Springer-Verlag, Berlin, (1993) · Zbl 0790.30018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.