×

Cluster algebras and triangulated surfaces. I: Cluster complexes. (English) Zbl 1263.13023

The authors initiate the study of an important class of cluster algebras which might be called cluster algebras from surfaces. The starting point for their construction is to consider triangulations of a connected oriented Riemann surface {S} with possibly empty boundary, and a non-empty finite set {M} of marked points on the closure of {S}, with at least one element of {M} in each connected component of boundaries. By introducing tagged arcs which are obtained by a tagging (plain or notched) for each end of an arc and modifying the concept of triangulations and the flipping procedure, the authors show that the adjacency matrix of a triangulation changes under flips that correspond to the mutation rule of the exchange matrix of the corresponding cluster algebra. Moreover, a natural bijection between tagged arcs (or tagged triangulations) and cluster variables (or clusters) is also given in the present paper. With the above setup, a series of conjectures of Fomin and Zelevinsky is verified for this class of cluster algebras from surfaces by exploiting their roots in combinatorial topology such as the intersection number of two arcs. For example, the seeds are determined by the clusters, and the exchange graph is independent of the choice of coefficients (see Theorem 5.6) and so on. In addition, the author show that cluster algebras of topological origin are mutation finite which by definition means the seeds appear only a finite number of exchanges. Moreover, the authors present briefly the \(11\) other known (exceptional) types of mutation finite cluster algebras with skew-symmetric exchange matrix. They wonder whether these are possibly all types of mutation finite skew symmetric cluster algebras or not. This has been recently confirmed in a work by Felikson, Shapiro and Tumarkin [“Skew–symmetric cluster algebras of finite mutation type”, arxiv:0811.1703].

MSC:

13F60 Cluster algebras
57Q15 Triangulating manifolds
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
52B70 Polyhedral manifolds

Software:

quivermutation

References:

[1] Berenstein, A., Fomin, S. & Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J., 126 (2005), 1–52. · Zbl 1135.16013 · doi:10.1215/S0012-7094-04-12611-9
[2] Björner, A., Topological methods, in Handbook of Combinatorics, Vol. 2, pp. 1819–1872. Elsevier, Amsterdam, 1995. · Zbl 0851.52016
[3] Buan, A. B. & Reiten, I., Acyclic quivers of finite mutation type. Int. Math. Res. Not., (2006), Art. ID 12804. · Zbl 1116.16013
[4] Chapoton, F., Lectures at the summer school ”Cluster Algebras”. Luminy, May 2005.
[5] – Rogers dilogarithm and y-systems, Lecture given at the workshop ”Teichmüller Theory and Cluster Algebras”. Leicester, May 2006.
[6] Chekhov, L. O. & Penner, R. C., Introduction to Thurston’s quantum theory. Uspekhi Mat. Nauk, 58 (2003), 93–138 (Russian); English translation in Russian Math. Surveys, 58 (2003), 1141–1183. · Zbl 1055.32011
[7] – On quantizing Teichmüller and Thurston theories, in Handbook of Teichmüller Theory. Vol. I, IRMA Lect. Math. Theor. Phys., 11, pp. 579–645. Eur. Math. Soc., Zürich, 2007.
[8] Derksen, H. & Owen, T., New graphs of finite mutation type. Preprint, 2008. arXiv:0804.0787. · Zbl 1180.05052
[9] Fock, V. V., Dual Teichmüller spaces. Preprint, 1997. arXiv:dg-ga/9702018.
[10] Fock, V. V. & Goncharov, A. B., Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci., (2006), 1–211. · Zbl 1099.14025
[11] – Dual Teichmüller and lamination spaces, in Handbook of Teichmüller Theory. Vol. I, IRMA Lect. Math. Theor. Phys., 11, pp. 647–684. Eur. Math. Soc., Zürich, 2007.
[12] – Cluster ensembles, quantization and the dilogarithm. Preprint, 2003. arXiv:math.AG/0311245.
[13] Fock, V. V. & Rosly, A. A., Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix, in Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191, pp. 67–86. Amer. Math. Soc., Providence, RI, 1999. · Zbl 0945.53050
[14] Fomin, S., & Thurston, D., Cluster algebras and triangulated surfaces. Part II: Lambda lengths. Preprint, 2008. · Zbl 1263.13023
[15] Fomin, S. & Reading, N., Root systems and generalized associahedra, in Geometric Combinatorics (Park City, UT, 2003), IAS/Park City Math. Ser., 14, pp. 63–131. Amer. Math. Soc., Providence, RI, 2007. · Zbl 1147.52005
[16] Fomin, S. & Zelevinsky, A., Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15 (2002), 497–529. · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[17] – Cluster algebras. II. Finite type classification. Invent. Math., 154 (2003), 63–121. · Zbl 1054.17024 · doi:10.1007/s00222-003-0302-y
[18] – Cluster algebras: notes for the CDM-03 conference, in Current Developments in Mathematics, 2003, pp. 1–34. Int. Press, Somerville, MA, 2003. · Zbl 1119.05108
[19] – Y-systems and generalized associahedra. Ann. of Math., 158 (2003), 977–1018. · Zbl 1057.52003 · doi:10.4007/annals.2003.158.977
[20] – Cluster algebras. IV. Coefficients. Compos. Math., 143 (2007), 112–164. · Zbl 1127.16023 · doi:10.1112/S0010437X06002521
[21] Freedman, M., Hass, J. & Scott, P., Closed geodesics on surfaces. Bull. London Math. Soc., 14 (1982), 385–391. · Zbl 0476.53026
[22] Geiss, C., Leclerc, B. & Schröer, J., Semicanonical bases and preprojective algebras. Ann. Sci. École Norm. Sup., 38 (2005), 193–253. · Zbl 1131.17006
[23] Gekhtman, M., Shapiro, M. & Vainshtein, A., Cluster algebras and Poisson geometry. Mosc. Math. J., 3 (2003), 899–934, 1199. · Zbl 1057.53064
[24] – Cluster algebras and Weil–Petersson forms. Duke Math. J., 127 (2005), 291–311. · Zbl 1079.53124 · doi:10.1215/S0012-7094-04-12723-X
[25] Harer, J. L., Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math., 121 (1985), 215–249. · Zbl 0579.57005 · doi:10.2307/1971172
[26] – The virtual cohomological dimension of the mapping class group of an orientable surface. Invent. Math., 84 (1986), 157–176. · Zbl 0592.57009 · doi:10.1007/BF01388737
[27] Hatcher, A., On triangulations of surfaces. Topology Appl., 40 (1991), 189–194. · Zbl 0727.57012 · doi:10.1016/0166-8641(91)90050-V
[28] Ivanov, N. V., Algebraic properties of the Teichmüller modular group. Dokl. Akad. Nauk SSSR, 275 (1984), 786–789 (Russian); English translation in Soviet Math. Dokl., 29 (1984), 288–291. · Zbl 0586.20026
[29] – Mapping class groups, in Handbook of Geometric Topology, pp. 523–633. North-Holland, Amsterdam, 2002. · Zbl 1002.57001
[30] Keller, B., Quiver mutation in java. http://www.institut.math.jussieu.fr/quivermutation .
[31] McCarthy, J., A ”Tits-alternative” for subgroups of surface mapping class groups. Trans. Amer. Math. Soc., 291 (1985), 583–612. · Zbl 0579.57006
[32] Mosher, L., Tiling the projective foliation space of a punctured surface. Trans. Amer. Math. Soc., 306 (1988), 1–70. · Zbl 0647.57005 · doi:10.1090/S0002-9947-1988-0927683-0
[33] Penner, R. C., The decorated Teichmüller space of punctured surfaces. Comm. Math. Phys., 113 (1987), 299–339. · Zbl 0642.32012 · doi:10.1007/BF01223515
[34] – Universal constructions in Teichmüller theory. Adv. Math., 98 (1993), 143–215. · Zbl 0772.30040 · doi:10.1006/aima.1993.1015
[35] – Decorated Teichmüller theory of bordered surfaces. Comm. Anal. Geom., 12 (2004), 793–820. · Zbl 1072.32008
[36] – Probing mapping class groups using arcs, in Problems on Mapping Class Groups and Related Topics, Proc. Sympos. Pure Math., 74, pp. 97–114. Amer. Math. Soc., Providence, RI, 2006. · Zbl 1216.57009
[37] – The structure and singularities of quotient arc complexes. J. Topol., 1 (2008), 527–550. · Zbl 1160.32016 · doi:10.1112/jtopol/jtn006
[38] Prasolov, V. V., Problems and Theorems in Linear Algebra. Translations of Mathematical Monographs, 134. Amer. Math. Soc., Providence, RI, 1994.
[39] Saito, K., Extended affine root systems. I. Coxeter transformations. Publ. Res. Inst. Math. Sci., 21 (1985), 75–179. · Zbl 0573.17012 · doi:10.2977/prims/1195179841
[40] Scott, J. S., Grassmannians and cluster algebras. Proc. London Math. Soc., 92 (2006), 345–380. · Zbl 1088.22009 · doi:10.1112/S0024611505015571
[41] Seven, A. I., Recognizing cluster algebras of finite type. Electron. J. Combin., 14 (2007), Research Paper 3, 35 pp. · Zbl 1114.05103
[42] Teschner, J., An analog of a modular functor from quantized Teichmüller theory, in Handbook of Teichmüller Theory. Vol. I, IRMA Lect. Math. Theor. Phys., 11, pp. 685–760. Eur. Math. Soc., Zürich, 2007. · Zbl 1129.30032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.