×

Infinite sharp conditions by Nehari manifolds for nonlinear Schrödinger equations. (English) Zbl 1439.35441

Summary: We study the Cauchy problem of the nonlinear Schrödinger equation \(i\varphi_t+\Delta \varphi +|\varphi |^{p-1}\varphi =0\). By constructing infinite Nehari manifolds with geometric features, we not only obtain infinite invariant sets of solutions, but also give infinite sharp conditions for global existence and finite time blow up of solutions.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35B44 Blow-up in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Afrouzi, GA; Mirzapour, M.; Rădulescu, VD, Existence and multiplicity results for anisotropic stationary Schrödinger equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 25, 91-108 (2014) · Zbl 1312.35106
[2] Afrouzi, GA; Mirzapour, M.; Rădulescu, VD, Qualitative properties of anisotropic elliptic Schrödinger equations, Adv. Nonlinear Stud., 14, 747-765 (2014) · Zbl 1301.35043
[3] Afrouzi, GA; Mirzapour, M.; Rădulescu, VD, Variational analysis of anisotropic Schrödinger equations without Ambrosetti-Rabinowitz-type condition, Z. Angew. Math. Phys., 69, 17 (2018) · Zbl 1393.35048
[4] Ao, W., Chan, H., González, M. del M., Wei, J.: Bound state solutions for the supercritical fractional Schrödinger equation. Nonlinear Anal. (2019). 10.1016/j.na.2019.02.002 · Zbl 1511.35162
[5] Ardila, AH, Orbital stability of standing waves for a system of nonlinear Schrödinger equations with three wave interaction, Nonlinear Anal., 167, 1-20 (2018) · Zbl 1379.35285
[6] Bégout, P., Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation, Adv. Math. Sci. Appl., 12, 817-827 (2002) · Zbl 1330.35393
[7] Bahrouni, A.; Ounaies, H.; Rădulescu, VD, Compactly supported solutions of Schrödinger equations with small perturbation, Appl. Math. Lett., 84, 148-154 (2018) · Zbl 1524.35247
[8] Bahrouni, A.; Ounaies, H.; Rădulescu, VD, Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, Proc. R. Soc. Edinb. Sect. A., 145, 445-465 (2015) · Zbl 1326.35329
[9] Bang, O.; Christiansen, PL; If, F.; Rasmussen, K.; Gaididei, YB, White noise in the two-dimensional nonlinear Schrödinger equation, Appl. Anal., 57, 3-15 (1995) · Zbl 0842.35111
[10] Benjamin, TB; Feir, JE, The disintegration of wave trains on deep water Part 1, Theory J. Fluid Mech., 27, 417-430 (1967) · Zbl 0144.47101
[11] Bisci, GM; Rădulescu, VD, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differ. Equ., 54, 2985-3008 (2015) · Zbl 1330.35495
[12] Cazenave, T.: An introduction to nonlinear Schrödinger equations. Universidade Federal do Rio de Janeiro, Centro de Ciências Matemáticas e da Natureza, Instituto de Matemática (1989)
[13] Cazenave, T., Semilinear Schrödinger Equations (2003), Providence, RI: American Mathematical Soc, Providence, RI · Zbl 1055.35003
[14] Chorfi, N.; Rădulescu, VD, Standing wave solutions of a quasilinear degenerate Schrödinger equation with unbounded potential, Electron. J. Qual. Theory Differ. Equ., 37, 1-12 (2016) · Zbl 1363.35117
[15] Ghanmi, A.; Mâagli, H.; Rădulescu, V.; Zeddini, N., Large and bounded solutions for a class of nonlinear Schrödinger stationary systems, Anal. Appl., 07, 391-404 (2009) · Zbl 1181.35062
[16] Ginibre, J.; Velo, G., On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32, 1-32 (1979) · Zbl 0396.35028
[17] Ginibre, J.; Velo, G., The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire., 2, 309-327 (1985) · Zbl 0586.35042
[18] Glassey, RT, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18, 1794-1797 (1977) · Zbl 0372.35009
[19] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion, Appl. Phys. Lett., 23, 171-172 (1973)
[20] Hayashi, M., A note on the nonlinear Schrödinger equation in a general domain, Nonlinear Anal., 173, 99-122 (2018) · Zbl 1391.35355
[21] Holmer, J., Roudenko, S.: On Blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl. Math. Res. Express. (2007). 10.1093/amrx/abm004 · Zbl 1130.35361
[22] Liu, Y.; Xu, R.; Yu, T., Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations, Nonlinear Anal., 68, 3332-3348 (2008) · Zbl 1149.35367
[23] Liu, Y.; Xu, R., A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equ., 244, 200-228 (2008) · Zbl 1138.35066
[24] Liu, Y.; Xu, R., Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, Discret. Cont. Dyn Syst. Ser. B., 7, 171-189 (2006) · Zbl 1121.35085
[25] Liu, Y.; Zhao, J., On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64, 2665-2687 (2006) · Zbl 1096.35089
[26] Liu, Y., On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differ. Equ., 192, 155-169 (2003) · Zbl 1024.35078
[27] Ma, W-X; Chen, M., Direct search for exact solutions to the nonlinear Schrödinger equation, Appl. Math. Comput., 215, 2835-2842 (2009) · Zbl 1180.65130
[28] Mihăilescu, M.; Rădulescu, V., Ground state solutions of non-linear singular Schrödinger equations with lack of compactness, Math. Methods Appl. Sci., 26, 897-906 (2003) · Zbl 1107.35102
[29] Mollenauer, LF; Stolen, RH; Gordon, JP, Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett., 45, 1095 (1980)
[30] Ogawa, T.; Tsutsumi, Y., Blow-up of \(H^1\) solution for the nonlinear Schrödinger equation, J. Differ. Equ., 92, 317-330 (1991) · Zbl 0739.35093
[31] Ogawa, T., Tsutsumi, Y.: Blow-up of \(H^1\) solutions for the one-dimensional nonlinear Schrödinger equations with critical power nonlinearity. Proc. Am. Math. Soc. (1991). 10.2307/2048340 · Zbl 0747.35004
[32] Peregrine, DH, Water waves and their development in space and time, Proc. R. Soc. Lond. A., 400, 1-18 (1985)
[33] Rosenau, P.; Hyman, JM, Compactons: solitons with finite wavelength, Phys. Rev. Lett., 70, 564 (1993) · Zbl 0952.35502
[34] Schrödinger, E., An undulatory theory of the mechanics of atoms and molecules, Phys. Rev., 28, 1049 (1926) · JFM 52.0965.07
[35] Shi, Q.; Peng, C., Wellposedness for semirelativistic Schrödinger equation with power-type nonlinearity, Nonlinear Anal., 178, 133-144 (2019) · Zbl 1406.35370
[36] Strauss, WA, Nonlinear Wave Equations (1990), Providence, RI: American Mathematical Soc, Providence, RI
[37] Stubbe, J., Global solutions and stable ground states of nonlinear Schrödinger equations, Physica D, 48, 259-272 (1991) · Zbl 0753.35099
[38] Wabnitz, S.; Kodama, Y.; Aceves, AB, Control of optical soliton interactions, Opt. Fiber Technol., 1, 187-217 (1995)
[39] Weinstein, MI, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, 567-576 (1983) · Zbl 0527.35023
[40] Xu, R.; Liu, Y.; Liu, B., The Cauchy problem for a class of the multidimensional Boussinesq-type equation, Nonlinear Anal., 74, 2425-2437 (2011) · Zbl 1210.35218
[41] Xu, R.; Liu, Y.; Yu, T., Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations, Nonlinear Anal., 71, 4977-4983 (2009) · Zbl 1167.35418
[42] Xu, R.; Liu, Y., Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations, Nonlinear Anal., 69, 2492-2495 (2008) · Zbl 1156.35332
[43] Xu, R.; Liu, Y., Remarks on nonlinear Schrödinger equation with harmonic potential, J. Math. Phys., 49, 043512 (2008) · Zbl 1152.81636
[44] Yuen, HC; Lake, BM, Nonlinear dynamics of deep-water gravity waves, Adv. Appl. Mech., 22, 67-229 (1982) · Zbl 0567.76026
[45] Zheng, B., On the well-posedness for the nonlinear radial Schrödinger equation with spatial variable coefficients, Nonlinear Anal., 182, 1-19 (2019) · Zbl 1416.35250
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.