×

Lower bound for matrix operators on the Euler weighted sequence space \(e_{w,p}^{\theta}\) (\(0<p<1\)). (English) Zbl 1279.47048

From the abstract: “Let \(A=\left( a_{n,k}\right) _{n,k\geq 0}\) be a nonnegative matrix. Denote by \(L_{l_{p}(w) ,e_{w,q}^{\theta }}(A) \) the supremum of those \(L\) satisfying the inequality \[ \left\{ \sum_{n=0}^{\infty }w_{n}\left( \sum_{k=0}^{n}\binom{n}{k}\left( 1-\Theta \right) ^{n-k_{\Theta }n}\sum_{j=0}^{\infty }a_{k,j}x_{j}\right) ^{q}\right\} ^{\frac{1}{q}}\geq L\left( \sum_{n=0}^{\infty }w_{n}x_{n}^{p}\right) ^{\frac{1}{p}}, \] where \(x\geq 0,\) \(x\in l_{p}\left( w\right) \) and \(w=( w_{n}) \) is a decreasing, non-negative sequence of real numbers.
In this paper, first we introduce the Euler weighted sequence space, \(e_{w,q}^{\theta}\) (\(0<p<1\)) of non-absolute type, which is the \(p\)-normed space included in the space \(l_{p}\left( w\right)\). Then we focus on the evaluation of \( L_{l_{p}(w) ,e_{w,q}^{\theta }}( A^{t}) \) for a lower triangular matrix \(A\), where \(0<q\leq p<1\). Also, a Hardy type formula is established for \(L_{l_{p}(w)},e_{w,q}^{\theta }( H^{t}) \), where \(H\) is Hausdorff matrix and \(0<q\leq p<1\). In particular, we apply our results to summability matrices, weighted mean matrices, Nörlund matrices, Cesàro matrices, Hölder matrices and Gamma matrices.”
Furthermore, the authors prove the following theorems:
Theorem 2.1. The set \(e_{w,p}^{\theta }\) becomes a linear space with the coordinatewise addition and scalar multiplication which is the \(p\)-normed space with the \(p\)-norm \[ ||| x||| :=\| x\|_{e_{w,p}^{\theta }}^{p}=\sum_{n=0}^{\infty }w_{n}\left| \sum_{k=0}^{n}\binom{n}{k}\left( 1-\Theta \right) ^{n-k}x_{k}\right| ^{p}. \] The inclusion \(e_{w,p}^{\theta }\subset l_{p}(w)\) holds for \(0<p<1\).
If \(0<s\leq r<1\), then \(e_{w,p}^{s}\subset e_{w,p}^{r}\).
Theorem 2.5. Let \(0<p<1\). Define the sequence \(b^{\left( j\right) }\left( \theta \right) =\left\{ b_{k}^{\left( j\right) }\left( \theta \right) \right\} _{k=0}^{\infty }\) of the elements of the space \(e_{w,p}^{\theta }\) by \[ b_{k}^{\left( j\right) }\left( \theta \right) =\begin{cases} 0 &\text{ if } k<j, \\ \binom{k}{j}\left( 1-\Theta \right) ^{k-j}\theta ^{-k} &\text{ if } k\geq j, \end{cases} \] for every fixed \(j=0,1,\dots\). Then the sequence \(\left\{ b^{(j)}(\theta)\right\} _{j=0}^{\infty }\) is basis for the space \( e_{w,p}^{\theta },\) and any \(x\in e_{w,p}^{\theta }\) has a unique representation of the form \[ x=\sum_{j=0}^{\infty }\left( E(\theta) x\right) _{j}b^{(j)}(\theta). \]
Theorem 3.2. Let \(0<q\leq p<1\) and \(A=\left( a_{n,k}\right) _{n,k\geq 0}\) be a lower triangular matrix with \(A\geq 0\). Then \[ L_{l_{p}( w) ,e_{w,q}^{\theta}}( A^{t}) \geq qM^{q-1}\left( \frac{1}{\theta }\right) ^{1/q}\left( \inf_{j\geq 0}\sum_{k=0}^{j}a_{j,k}\right) . \] Let \(0<q\leq p<1\), \(1/q+1/q^{\ast }=1\) and \(H_{\mu }\) be the Hausdorff matrix. Then \[ L_{l_{p}( w) ,e_{w,q}^{\theta}}( H_{\mu }^{t}) \geq \theta ^{-1/q}\int_{0}^{1}\alpha ^{1/q^{\ast }}d\mu \left( \alpha \right) . \]

MSC:

47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
26D15 Inequalities for sums, series and integrals
47A30 Norms (inequalities, more than one norm, etc.) of linear operators
40G05 Cesàro, Euler, Nörlund and Hausdorff methods
46A45 Sequence spaces (including Köthe sequence spaces)
54D55 Sequential spaces
Full Text: DOI

References:

[1] Altay, B., Başar, F.: Some Euler sequence spaces of non-absolute type. Ukr. Math. J. 56(12) (2004, in press)
[2] Altay, B., Başar, F., Mursaleen, M.: On the Euler sequence spaces which include the spaces l p and l I. Inf. Sci. 176, 1450–1462 (2006) · Zbl 1101.46015 · doi:10.1016/j.ins.2005.05.008
[3] Aydin, C., Başar, F.: Some new paranormed sequence spaces. Inf. Sci. 160(1–4), 27–40 (2004) · Zbl 1049.46002 · doi:10.1016/j.ins.2003.07.009
[4] Aydin, C., Başar, F.: Some new difference sequence spaces. Appl. Math. Comput. 157(3), 677–693 (2004) · Zbl 1072.46007 · doi:10.1016/j.amc.2003.08.055
[5] Bennett, G.: Inequalities complimentary to Hardy. Q. J. Math. Oxf. 49(2), 395–432 (1998) · Zbl 0929.26013
[6] Bennett, G.: Lower bounds for matrices. Linear Algebra Appl. 82, 81–98 (1986) · Zbl 0601.15014 · doi:10.1016/0024-3795(86)90143-6
[7] Bennett, G.: Lower bounds for matrices II. Can. J. Math. 44, 54–74 (1991) · Zbl 0776.15012 · doi:10.4153/CJM-1992-003-9
[8] Chen, C.-P., Wang, K.-Z.: Lower bounds of Copson type for the transposes of lower triangular matrices. J. Math. Anal. Appl. 341, 1284–1294 (2008) · Zbl 1143.15018 · doi:10.1016/j.jmaa.2007.11.025
[9] Chen, C.-P., Wang, K.-Z.: Lower bounds of Copson for Hausdorff matrices. Linear Algebra Appl. 420, 208–217 (2007) · Zbl 1117.15019 · doi:10.1016/j.laa.2006.07.005
[10] Chen, C.-P., Wang, K.-Z.: Lower bounds of Copson for Hausdorff matrices II. Linear Algebra Appl. 422, 563–573 (2007) · Zbl 1135.15015 · doi:10.1016/j.laa.2006.11.015
[11] Foroutannia, D.: Upper bound and lower bound for matrix operators on weighted sequence space. Doctoral Dissertation, Zahedan (2007) · Zbl 1149.26029
[12] Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1967)
[13] Lashkaripour, R., Foroutannia, D.: Inequality involving upper bounds for certain matrix operators. Proc. Indian Acad. Sci. Math. Sci. 116, 325–336 (2006) · Zbl 1118.47024 · doi:10.1007/BF02829749
[14] Lashkaripour, R., Foroutannia, D.: Lower bounds for matrices on weighted sequence spaces. J. Sci. Islam. Repub. Iran 18(1), 49–56 (2007) · Zbl 1224.46011
[15] Lashkaripour, R., Foroutannia, D.: Lower bounds for matrices on block weighted sequence spaces I. Czechoslov. Math. J. 59(134), 81–94 (2009) · Zbl 1217.47065 · doi:10.1007/s10587-009-0006-6
[16] Lashkaripour, R., Talebi, G.: Lower bounds of Copson type for the transpose of matrices on weighted sequence spaces. Bull. Iran. Math. Soc. (2011, to appear) · Zbl 1242.40004
[17] Lashkaripour, R., Talebi, G.: Lower bounds of Copson for Hausdorff matrices on weighted sequence spaces. Preprint · Zbl 1242.40004
[18] Lashkaripour, R., Talebi, G.: Lower bound for matrix operators between two different weighted sequence spaces. Preprint · Zbl 1279.47048
[19] Talebi, G.: Lower bound of Copson type for matrices on weighted sequence spaces. M.S.C. Dissertation, Zahedan (2010)
[20] Wang, C.-S.: On Nörlund sequence spaces. Tamkang J. Math. 9, 269–274 (1978) · Zbl 0415.46009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.