×

Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints. (English) Zbl 1253.74078

Summary: An algorithm for topology optimization of elastic structures under plane stress subject to the Drucker-Prager stress constraint is presented. The algorithm is based on the use of the topological derivative of the associated objective functional in conjunction with a level-set representation of the structure domain. In this context, a penalty functional is proposed to enforce the point-wise stress constraint and a closed formula for its topological derivative is derived. The resulting algorithm is of remarkably simple computational implementation. It does not require post-processing procedures of any kind and features only a minimal number of user-defined algorithmic parameters. This is in sharp contrast with current procedures for topological structural optimization with local stress constraints. The effectiveness and efficiency of the algorithm presented here are demonstrated by means of numerical examples. The examples show, in particular, that it can easily handle structural optimization problems with underlying materials featuring strong asymmetry in their tensile and compressive yield strengths.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
49Q12 Sensitivity analysis for optimization problems on manifolds
Full Text: DOI

References:

[1] Allaire, G., Conception optimale de structures, Mathématiques et Applications, 58 (2007), Springer-Verlag: Springer-Verlag Berlin · Zbl 1132.49033
[2] Allaire, G.; Jouve, F.; Maillot, H., Topology optimization for minimum stress design with the homogenization method, Struct. Multidiscip. Optim., 28, 2-3, 87-98 (2004) · Zbl 1243.74148
[3] Allaire, G.; Jouve, F., Minimum stress optimal design with the level-set method, Engrg. Anal. Bound. Elem., 32, 11, 909-918 (2008), Special issue · Zbl 1244.74104
[4] Amstutz, S., Sensitivity analysis with respect to a local perturbation of the material property, Asymptotic Anal., 49, 1-2, 87-108 (2006) · Zbl 1187.49036
[5] Amstutz, S.; Andrä, H., A new algorithm for topology optimization using a level-set method, J. Comput. Phys., 216, 2, 573-588 (2006) · Zbl 1097.65070
[6] Amstutz, S., A penalty method for topology optimization subject to a pointwise state constraint, ESAIM: Control Optim. Calc. Variations, 16, 03, 523-544 (2010) · Zbl 1201.49046
[7] Amstutz, S.; Giusti, S. M.; Novotny, A. A.; A de Souza Neto, E., Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures, International Journal for Numerical Methods in Engineering, 84, 733-756 (2010) · Zbl 1202.74132
[8] Amstutz, S.; Novotny, A. A., Topological optimization of structures subject to von Mises stress constraints, Struct. Multidiscip. Optim., 41, 407-420 (2010) · Zbl 1274.74053
[9] Bendse, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[10] Bendse, M. P.; Sigmund, O., Topology Optimization Theory, Methods and Applications (2003), Springer-Verlag: Springer-Verlag Berlin
[11] Burger, M.; Stainko, R., Phase-field relaxation of topology optimization with local stress constraints, SIAM J. Control Optim., 45, 4, 1447-1466 (2006) · Zbl 1116.74053
[12] Céa, J.; Garreau, S.; Guillaume, Ph.; Masmoudi, M., The shape and topological optimizations connection, Comput. Methods Appl. Mech. Engrg., 188, 4, 713-726 (2000) · Zbl 0972.74057
[13] de Souza Neto, E. A.; Perić, D.; Owen, D. R.J., Computational Methods for Plasticity, Theory and Applications (2008), Wiley: Wiley Chichester
[14] Duysinx, P.; Bendse, M. P., Topology optimization of continuum structures with local stress constraints, Int. J. Numer. Methods Engrg., 43, 1453-1478 (1998) · Zbl 0924.73158
[15] Drucker, D. C.; Prager, W., Soil mechanics and plasticity analysis of limit design, Quart. J. Appl. Math., 10, 157-162 (1952) · Zbl 0047.43202
[16] Eschenauer, H. A.; Olhoff, N., Topology optimization of continuum structures: a review, Appl. Mech. Rev., 54, 331-390 (2001)
[17] Eschenauer, H. A.; Kobelev, V. V.; Schumacher, A., Bubble method for topology and shape optimization of structures, Struct. Optim., 8, 42-51 (1994)
[18] Fancello, E. A., Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions, Struct. Multidiscip. Optim., 32, 3, 229-240 (2006) · Zbl 1245.74071
[19] Genesis Structural Analysis and Optimization Software. Vanderplaats Research & Development, Inc. Web page <http://www.vrand.com/Genesis.html>; Genesis Structural Analysis and Optimization Software. Vanderplaats Research & Development, Inc. Web page <http://www.vrand.com/Genesis.html>
[20] Giusti, S. M.; Novotny, A. A.; Padra, C., Topological sensitivity analysis of inclusion in two-dimensional linear elasticity, Engrg. Anal. Bound. Elem., 32, 11, 926-935 (2008) · Zbl 1244.74106
[21] Knees, D.; Sändig, A.-M., Regularity of elastic fields in composites, (Multifield Problems in Solid and Fluid Mechanics, Lecture Notes on Applied Computational Mechanics, 28 (2006), Springer: Springer Berlin), 331-360 · Zbl 1298.74014
[22] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 605-620 (2010)
[23] Little, R. W., Elasticity (1973), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0357.73024
[24] Nazarov, S. A.; Sokolowski, J., Asymptotic analysis of shape functionals, J. Math. Pure. Appl., 82, 2, 125-196 (2003) · Zbl 1031.35020
[25] Norato, J. A.; Bendse, M. P.; Haber, R. B.; Tortorelli, D., A topological derivative method for topology optimization, Struct. Multidiscip. Optim., 33, 4-5, 375-386 (2007) · Zbl 1245.74074
[26] Novotny, A. A.; Feijóo, R. A.; Padra, C.; Taroco, E., Topological sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 192, 7-8, 803-829 (2003) · Zbl 1025.74025
[27] Novotny, A. A.; Feijóo, R. A.; Taroco, E.; Padra, C., Topological sensitivity analysis for three-diensional elasticity problem, Comput. Methods Appl. Mech. Engrg., 196, 41-44, 4354-4364 (2007) · Zbl 1173.74374
[28] Altair OptiStruct. Altair Engineering, Inc. Web page <http://www.altairhyperworks.com>; Altair OptiStruct. Altair Engineering, Inc. Web page <http://www.altairhyperworks.com>
[29] Pereira, J. T.; Fancello, E. A.; Barcellos, C. S., Topology optimization of continuum structures with material failure constraints, Struct. Multidiscip. Optim., 26, 1-2, 50-66 (2004) · Zbl 1243.74157
[30] Rocha de Faria, J.; Novotny, A. A., On the second order topological asymptotic expansion, Struct. Multidiscip. Optim., 39, 6, 50-66 (2009)
[31] Sokolowski, J.; Zochowski, A., On the topological derivatives in shape optmization, SIAM J. Control Optim., 37, 4, 1251-1272 (1999) · Zbl 0940.49026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.