×

Existence of multiple positive solutions for Schrödinger-Poisson systems with critical growth. (English) Zbl 1329.35144

Summary: In this paper, we are concerned with the existence, multiplicity and concentration of positive ground state solutions for the semilinear Schrödinger-Poisson system \[ \begin{cases} -\varepsilon^{2} \Delta u+a(x)u+\lambda\phi(x)u=b(x)f(u)+|u|^{4}u,& x\in\mathbb{R}^{3}, \\ -\varepsilon^{2} \Delta\phi=u^{2},\;u\in H^{1}(\mathbb{R}^{3}),& x\in\mathbb{R}^{3},\end{cases} \] where \({\varepsilon > 0}\) is a small parameter, \(f\) is a continuous, superlinear and subcritical nonlinearity, and \({\lambda\neq0}\) is a real parameter. Suppose that \(a(x)\) has at least one global minimum and \(b(x)\) has at least one global maximum. We prove that there are two families of positive solutions for sufficiently small \({\varepsilon > 0}\), of which one is concentrating on the set of minimal points of \(a\) and the other on the sets of maximal points of \(b\). Moreover, we obtain some sufficient conditions for the nonexistence of positive ground state solutions.

MSC:

35J50 Variational methods for elliptic systems
35J61 Semilinear elliptic equations
35Q55 NLS equations (nonlinear Schrödinger equations)
49J40 Variational inequalities
35B09 Positive solutions to PDEs
Full Text: DOI

References:

[1] Ambrosetti A., Ruiz D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391-404 (2008) · Zbl 1188.35171 · doi:10.1142/S021919970800282X
[2] Ambrosetti A.: On Schrödinger-Possion systems. Milan J. Math. 76, 257-274 (2008) · Zbl 1181.35257 · doi:10.1007/s00032-008-0094-z
[3] Azzollini A., d’Avenia P., Pomponio A.: On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 779-791 (2010) · Zbl 1187.35231 · doi:10.1016/j.anihpc.2009.11.012
[4] Azzollini A.: Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity. J. Differ. Equ. 249, 1746-1765 (2010) · Zbl 1197.35096 · doi:10.1016/j.jde.2010.07.007
[5] Brézis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437-477 (1983) · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[6] Benci V., Fortunato D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14, 409-420 (2002) · Zbl 1037.35075 · doi:10.1142/S0129055X02001168
[7] Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283-293 (1998) · Zbl 0926.35125
[8] Coti-Zelati, V.: A Short Introduction to Critical Point Theory, Second School on Nonlinear Functional Analysis and Applications to Differential Equations. ICTP-Trieste, SMR 990-15 (1997) · Zbl 0877.35043
[9] Cerami G., Vaira G.: Positive solutions for some non autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248, 521-543 (2010) · Zbl 1183.35109 · doi:10.1016/j.jde.2009.06.017
[10] D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134, 893-906 (2004) · Zbl 1064.35182 · doi:10.1017/S030821050000353X
[11] D’Aprile T., Mugnai D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307-322 (2004) · Zbl 1142.35406
[12] D’Aprile T., Wei J.: On bound states concentrating on spheres for the Maxwell-Schrödinger equation. SIAM J. Math. Anal. 37, 321-342 (2005) · Zbl 1096.35017 · doi:10.1137/S0036141004442793
[13] d’Avenia P., Pomponio A., Vaira G.:Infinitely many positive solutions for a Schrödinger-Poisson system. Nonlinear Anal. 74, 5705-5721 (2011) · Zbl 1225.35226 · doi:10.1016/j.na.2011.05.057
[14] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224, 2nd edn. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1983) · Zbl 0562.35001
[15] Jeanjean L.: On the existence of bounded Palais-Smale sequences and applications to a Landesman-Lazer type problem set on \[{\mathbb{R}^N}\] RN. Proc. R. Soc. Edinb. A 129, 787-809 (1999) · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[16] Jeanjean L., Tanaka K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. PDE 21, 287-318 (2004) · Zbl 1060.35012 · doi:10.1007/s00526-003-0261-6
[17] Jeanjean L., Tanaka K.: A positive solution for an asymptotically linear elliptic problem on \[{\mathbb{R}^N}\] RN autonomous at infinity. ESAIM Control Optim. Calc. Var. 7, 597-614 (2002) · Zbl 1225.35088 · doi:10.1051/cocv:2002068
[18] Kang X., Wei J.C.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differ. Equ. 5, 899-928 (2000) · Zbl 1217.35065
[19] Kikuchi H.: Existence and stability of standing waves for Schrödinger-Poisson-Slater equation. Adv. Nonlinear Stud. 7, 403-437 (2007) · Zbl 1133.35013
[20] Mugnai D.: The Schrödinger-Poisson system with positive potential. Commun. Partial Differ. Equ. 36, 1099-1117 (2011) · Zbl 1234.35252 · doi:10.1080/03605302.2011.558551
[21] Szulkin A., Weth T.: The Method of Nehari Manifold, Handbook of Nonconvex Analysis and Applications. International Press, Boston (2010) · Zbl 1218.58010
[22] Ruiz D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655-674 (2006) · Zbl 1136.35037 · doi:10.1016/j.jfa.2006.04.005
[23] Ruiz D.: Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere. Math. Models Methods Appl. Sci. 15, 141-164 (2005) · Zbl 1074.81023 · doi:10.1142/S0218202505003939
[24] Ruiz, D., Vaira, G.: Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential. Rev. Mat. Iberoamericana 27(1), 253-271 (2011) · Zbl 1216.35024
[25] Ding Y.H., Liu X.: Semi-classical limits of ground states of a nonlinear Dirac equation. J. Differ. Equ. 252, 4962-4987 (2012) · Zbl 1236.35133 · doi:10.1016/j.jde.2012.01.023
[26] Ding Y.H., Liu X.: Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities. Manuscr. Math. 140, 51-82 (2013) · Zbl 1283.35122 · doi:10.1007/s00229-011-0530-1
[27] Willem M.: Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24. Birkhäuser, Basel (1996) · Zbl 0856.49001
[28] Strauss W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149-162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[29] de Figueiredo D.G., Yang J.: Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlin. Anal. 33, 211-234 (1998) · Zbl 0938.35054 · doi:10.1016/S0362-546X(97)00548-8
[30] Vaira G.: Ground states for Schrödinger-Poisson type systems. Ric. Mat. 60, 263-297 (2011) · Zbl 1261.35057 · doi:10.1007/s11587-011-0109-x
[31] Ianni I., Vaira G.: On concentration of positive bound states for the Schrödinger-Poisson problem with potentials. Adv. Nonlin. Stud. 8, 573-595 (2008) · Zbl 1216.35138
[32] Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[33] Zhao L., Zhao F.: On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl. 346, 155-169 (2008) · Zbl 1159.35017 · doi:10.1016/j.jmaa.2008.04.053
[34] He X.M.: Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations. Z. Angew. Math. Phys. 62, 869-889 (2011) · Zbl 1258.35170 · doi:10.1007/s00033-011-0120-9
[35] Wang J., Tian L.X., Xu J.X., Zhang F.B.: Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in \[{\mathbb{R}^3}\] R3. Calc. Var. PDE 48, 243-273 (2013) · Zbl 1278.35074 · doi:10.1007/s00526-012-0548-6
[36] Wang J., Tian L.X., Xu J.X., Zhang F.B.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314-2351 (2012) · Zbl 1402.35119 · doi:10.1016/j.jde.2012.05.023
[37] Wang J., Xu J.X., Zhang F.B., Chen X.: Existence of multi-bump solutions for a semilinear Schrödinger-Poisson system. Nonlinearity 26, 1377-1399 (2013) · Zbl 1301.35159 · doi:10.1088/0951-7715/26/5/1377
[38] Wang, J., Xu, J.X., Zhang, F.B.: Multiple positive solutions to semilinear Schrödinger-Poisson system with critical growth (preprint) · Zbl 1402.35119
[39] Miyagaki O.H.: On a class of semilinear elliptic problem in \[{\mathbb{R}^N}\] RN with critical growth. Nonlin. Anal. TMA 29, 773-781 (1997) · Zbl 0877.35043 · doi:10.1016/S0362-546X(96)00087-9
[40] Alves C.O., Souto M. A.: On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Commun. Pure Appl. Anal. 1, 417-431 (2002) · Zbl 1183.35121 · doi:10.3934/cpaa.2002.1.417
[41] Brezis H., Kato T.: Remarks on the Schrödinger operator with regular complex potentials. J. Math. Pures Appl. 58, 137-151 (1979) · Zbl 0408.35025
[42] Talenti G.: Best constants in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353-372 (1976) · Zbl 0353.46018 · doi:10.1007/BF02418013
[43] Lions, P.L.: The concentration compactness principle in the calculus of variations: the locally compact case. Parts 1, 2, Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109-145, and 2, 223-283 (1984) · Zbl 0541.49009
[44] Li G.B.: Some properties of weak solutions of nonlinear scalar fields equation. Ann. Acad. Sci. Fenn. Math. 14, 27-36 (1989) · Zbl 0628.10041 · doi:10.5186/aasfm.1989.1425
[45] Alves, C. O., Yang, M. B.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257, 4133-4164 (2014) · Zbl 1309.35036
[46] Wang, J., Lu, D. C., Xu, J. X., Zhang, F. B.: Multiple positive solutions for semilinear Schrödinger equations with critical growth in \[{\mathbb{R}^N}\] RN. J. Math. Phys. 56, 041503 (2015) · Zbl 1318.35111
[47] Wang, W. B., Yang, X. Y., Zhao, F. K.: Existence and concentration of ground state solutions for a subcubic quasilinear problem via Pohozaev manifold. J. Math. Anal. Appl. 424, 1471-1490 (2015) · Zbl 1308.35106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.