×

Some results on \((A; (m, n))\)-isosymmetric operators on a Hilbert space. (English) Zbl 1510.47031

Summary: In this paper, we introduce the class of \((A; (m, n))\)-isosymmetric operators and we study some of their properties, for a positive semi-definite operator \(A\) and \(m,n\in \mathbb{N}\), which extend, by changing the initial inner product with the semi-inner product induced by \(A\), the well-known class of \((m, n)\)-isosymmetric operators introduced by M. Stankus [Isosymmetric linear transformations on complex Hilbert space. San Diego: University of California (PhD Thesis) (1993); Integral Equations Oper. Theory 75, No. 3, 301–321 (2013; Zbl 1284.47015)]. In particular, we characterize a family of \(A\)-isosymmetric \((2\times 2)\) upper triangular operator matrices. Moreover, we show that, if \(T\) is \((A; (m, n))\)-isosymmetric and if \(Q\) is a nilpotent operator of order \(r\) doubly commuting with \(T\), then \(T^p\) is \((A; (m, n))\)-isosymmetric symmetric for any \(p\in \mathbb{N}\) and \((T +Q)\) is \((A;(m+2r -2, n+2r -1))\)-isosymmetric. Some properties of the spectrum are also investigated.

MSC:

47B25 Linear symmetric and selfadjoint operators (unbounded)
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47B65 Positive linear operators and order-bounded operators
47A55 Perturbation theory of linear operators

Citations:

Zbl 1284.47015

References:

[1] Agler, J.; Stankus, M., \(m\)-Isometric transformations of Hilbert spaces I, Integral Equ. Oper. Theory, 21, 4, 383-429 (1995) · Zbl 0836.47008 · doi:10.1007/BF01222016
[2] Agler, J.; Stankus, M., \(m\)-Isometric transformations of Hilbert space II, Integral Equ. Oper. Theory, 23, 1, 1-48 (1995) · Zbl 0857.47011 · doi:10.1007/BF01261201
[3] Agler, J.; Stankus, M., \(m\)-Isometric transformations of Hilbert space III, Integral Equ. Oper. Theory, 24, 4, 379-421 (1996) · Zbl 0871.47012 · doi:10.1007/BF01191619
[4] Ahmadi, MF, Powers of \(A-m\)-isometric operators and their supercyclicity, Bull. Malays. Math. Sci. Soc., 39, 901-911 (2016) · Zbl 1387.47002 · doi:10.1007/s40840-015-0201-6
[5] Chō, M.; Ko, E.; Lee, JE, Skew \(m\)-complex symmetric operators, Filomat, 33, 10, 2975-2983 (2019) · Zbl 1498.47058 · doi:10.2298/FIL1910975C
[6] Chō, M.; Lee, JE; Tanahashi, K.; Tomiyama, J., On \([m, C]\)-symmetric operators, Kyungpook Math. J., 58, 637-650 (2018) · Zbl 07083930
[7] Chō, M.; Lee, JE; Prasad, T.; Tanahashi, K., Complex isosymmetric operators, Adv. Oper. Theory, 3, 3, 620-631 (2018) · Zbl 06902455 · doi:10.15352/aot.1712-1267
[8] Chō, M.; Mahmoud, SAO, \((A, m)\)-symmetric commuting tuples of operators on a Hilbert space, MIA, 22, 3, 931-947 (2019) · Zbl 07134249
[9] Duggal, BP; Müller, V., Tensor product of left \(n\)-invertible operators, Stud. Math., 215, 2, 113-125 (2013) · Zbl 1273.47037 · doi:10.4064/sm215-2-2
[10] Helton, JW, Jordan operators in infinite dimensions and Sturm Liouville conjugate point theory, Bul. Am. Math. Soc., 78, 1, 57-61 (1972) · Zbl 0234.47031 · doi:10.1090/S0002-9904-1972-12850-7
[11] Helton, JW, Operators with a representation as multiplication by \(x\) on a Sobolev space, Colloq. Math. Soc. Janos Bolyai, 5, 279-287 (1970) · Zbl 0249.47015
[12] Jeridi, N.; Rabaoui, R., On \((A, m)\)-symmetric operators in a Hilbert space, Results Math. (2019) · Zbl 1475.47015 · doi:10.1007/s00025-019-1049-0
[13] Jung, S.; Kim, Y.; Ko, E.; Lee, JE, On \((A, m)\)-expansive operators, Stud. Math., 213, 1, 3-23 (2012) · Zbl 1275.47037 · doi:10.4064/sm213-1-2
[14] Kim, Y.; Ko, E.; Lee, J., Operators with the single valued extension property, Bull. Korean Math. Soc., 43, 3, 509-517 (2006) · Zbl 1125.47003 · doi:10.4134/BKMS.2006.43.3.509
[15] Le, T., Decomposing algebraic \(m\)-isometric tuples, J. Funct. Anal. (2020) · Zbl 1448.47013 · doi:10.1016/j.jfa.2019.108424
[16] McCullough, SA; Rodman, L., Hereditary classes of operators and matrices, Am. Math. Mon., 104, 5, 415-430 (1997) · Zbl 0909.47016 · doi:10.1080/00029890.1997.11990659
[17] Rabaoui, R.; Saddi, A., On the Orbit of an \(A-m\)-isometry, Annales Mathematicae Silesianae., 26, 75-91 (2012) · Zbl 1307.47008
[18] Sid Ahmed, OAM; Saddi, A., \(A-m\)-isometric operators in semi-Hilbertian spaces, Linear Algebra Appl., 436, 10, 3930-3942 (2012) · Zbl 1246.46019 · doi:10.1016/j.laa.2010.09.012
[19] Stankus, M., \(m\)-Isometries, \(n\)-symmetries and other linear transformations which are hereditary roots, Integral Equ Oper Theory, 75, 3, 301-321 (2013) · Zbl 1284.47015 · doi:10.1007/s00020-012-2026-0
[20] Stankus, M.: Isosymmetric linear transformations on complex Hilbert Space. Thesis, University of California, San Diego (1993)
[21] Tokmakoff, A.: Exponential Operators, Time-Dependent Quantum Mechanics and Spectroscopy. Reference material, University of Chicago. (December 2014). https://tdqms.uchicago.edu/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.