×

On the use of nonlinear anisotropic diffusion filters for seismic imaging using the full waveform. (English) Zbl 1498.35622

Summary: Nonlinear anisotropic diffusion filters have been introduced in the field of image processing for image denoising and image restoration. They are based on the solution of partial differential equations involving a nonlinear anisotropic diffusion operator. From a mathematical point of view, these filters enjoy attractive properties, such as minimum-maximum principle, and an inherent decomposition of the images in different scales. We investigate in this study how these filters can be applied to help solving data-fitting inverse problems. We focus on seismic imaging using the full waveform, a well known nonlinear instance of such inverse problems. In this context, we show how the filters can be applied directly to the solution space, to enhance the structural coherence of the parameters representing the subsurface mechanical properties and accelerate the convergence. We also show how they can be applied to the seismic data itself. In the latter case, the method results in an original low-frequency data enhancement technique making it possible to stabilize the inversion process when started from an initial model away from the basin of attraction of the global minimizer. Numerical results on a 2D realistic synthetic full waveform inversion case study illustrate the interesting properties of both approaches.

MSC:

35R30 Inverse problems for PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K59 Quasilinear parabolic equations

Software:

SEISCOPE; FITPACK

References:

[1] Aghamiry, H. S.; Gholami, A.; Operto, S., Accurate and efficient data-assimilated wavefield reconstruction in the time domain, Geophysics, 85, A7-A12 (2020) · doi:10.1190/geo2019-0535.1
[2] Aghamiry, H. S.; Gholami, A.; Operto, S., Compound regularization of full-waveform inversion for imaging piecewise media, IEEE Trans. Geosci. Remote Sensing, 58, 1192-1204 (2020) · doi:10.1109/tgrs.2019.2944464
[3] Anagaw, A. Y.; Sacchi, M. D., Edge-preserving smoothing for simultaneous-source full-waveform inversion model updates in high-contrast velocity models, Geophysics, 83, A33-A37 (2018) · doi:10.1190/geo2017-0563.1
[4] Asnaashari, A.; Brossier, R.; Garambois, S.; Audebert, F.; Thore, P.; Virieux, J., Regularized seismic full waveform inversion with prior model information, Geophysics, 78, R25-R36 (2013) · doi:10.1190/geo2012-0104.1
[5] Barnier, G.; Biondi, E.; Clapp, R., Waveform inversion by model reduction using spline interpolation, SEG Technical Program Expanded Abstracts 2019, 1400-1404 (2019), Society of Exploration Geophysicists
[6] Bérenger, J-P, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200 (1994) · Zbl 0814.65129 · doi:10.1006/jcph.1994.1159
[7] Bozdağ, E.; Trampert, J.; Tromp, J., Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements, Geophys. J. Int., 185, 845-870 (2011) · doi:10.1111/j.1365-246x.2011.04970.x
[8] Brossier, R.; Operto, S.; Virieux, J., Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion, Geophysics, 74, WCC105-WCC118 (2009) · doi:10.1190/1.3215771
[9] Bunks, C.; Saleck, F. M.; Zaleski, S.; Chavent, G., Multiscale seismic waveform inversion, Geophysics, 60, 1457-1473 (1995) · doi:10.1190/1.1443880
[10] Capdeville, Y.; Métivier, L., Elastic full waveform inversion based on the homogenization method: theoretical framework and 2D numerical illustrations, Geophys. J. Int., 213, 1093-1112 (2018) · doi:10.1093/gji/ggy039
[11] Cupillard, P.; Capdeville, Y., Non-periodic homogenization of 3D elastic media for the seismic wave equation, Geophys. J. Int., 213, 983-1001 (2018) · doi:10.1093/gji/ggy032
[12] Devaney, A. J., Geophysical diffraction tomography, IEEE Trans. Geosci. Remote Sensing, GE-22, 3-13 (1984) · doi:10.1109/tgrs.1984.350573
[13] Dierckx, P., Curve and Surface Fitting with Splines (1993), Oxford: Oxford Science Publications (Clarendon Press), Oxford · Zbl 0782.41016
[14] Fehrenbach, J.; Mirebeau, J-M, Sparse non-negative stencils for anisotropic diffusion, J. Math. Imaging Vis., 49, 123-147 (2014) · Zbl 1365.68451 · doi:10.1007/s10851-013-0446-3
[15] Fichtner, A.; Kennett, B. L N.; Igel, H.; Bunge, H-P, Geophys. J. Int., 179, 1703-1725 (2009) · doi:10.1111/j.1365-246x.2009.04368.x
[16] Górszczyk, A.; Brossier, R.; Métivier, L., Graph-space optimal transport concept for time-domain full-waveform inversion of ocean-bottom seismometer data: Nankai trough velocity structure reconstructed from a 1D model, J. Geophys. Res., 126 (2021) · doi:10.1029/2020jb021504
[17] Grote, M. J.; Kray, M.; Nahum, U., Adaptive eigenspace method for inverse scattering problems in the frequency domain, Inverse Problems, 33 (2017) · Zbl 1515.35343 · doi:10.1088/1361-6420/aa5250
[18] Guitton, A.; Ayeni, G.; Díaz, E., Constrained full-waveform inversion by model reparameterization, Geophysics, 77, R117-R127 (2012) · doi:10.1190/geo2011-0196.1
[19] Hicks, G. J., Arbitrary source and receiver positioning in finite‐difference schemes using Kaiser windowed sinc functions, Geophysics, 67, 156-165 (2002) · doi:10.1190/1.1451454
[20] Huang, G.; Nammour, R.; Symes, W. W., Source-independent extended waveform inversion based on space-time source extension: frequency-domain implementation, Geophysics, 83, R449-R461 (2018) · doi:10.1190/geo2017-0333.1
[21] Lailly, P.; Bednar, R.; Weglein, The seismic inverse problem as a sequence of before stack migrations, 206-220 (1983), Philadelphia, PA: SIAM, Philadelphia, PA
[22] Lei, W., Global adjoint tomography-model GLAD-M25, Geophys. J. Int., 223, 1-21 (2020) · doi:10.1093/gji/ggaa253
[23] Li, Y. E.; Demanet, L., Full-waveform inversion with extrapolated low-frequency data, Geophysics, 81, R339-R348 (2016) · doi:10.1190/geo2016-0038.1
[24] Martin, G. S.; Wiley, R.; Marfurt, K. J., Marmousi2: an elastic upgrade for Marmousi, Leading Edge, 25, 156-166 (2006) · doi:10.1190/1.2172306
[25] Métivier, L.; Brossier, R., The SEISCOPE optimization toolbox: a large-scale nonlinear optimization library based on reverse communication, Geophysics, 81, F11-F25 (2016) · doi:10.1190/geo2015-0031.1
[26] Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E., A graph space optimal transport distance as a generalization of L^p distances: application to a seismic imaging inverse problem, Inverse Problems, 35 (2019) · Zbl 1423.90145 · doi:10.1088/1361-6420/ab206f
[27] Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J., An optimal transport approach for seismic tomography: application to 3D full waveform inversion, Inverse Problems, 32 (2016) · Zbl 1410.86018 · doi:10.1088/0266-5611/32/11/115008
[28] Mirebeau, J-M, Minimal stencils for discretizations of anisotropic PDEs preserving causality or the maximum principle, SIAM J. Numer. Anal., 54, 1582-1611 (2016) · Zbl 1341.35077 · doi:10.1137/16m1064854
[29] Nocedal, J., Math. Comput., 35, 773-782 (1980) · Zbl 0464.65037 · doi:10.1090/s0025-5718-1980-0572855-7
[30] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Berlin: Springer, Berlin · Zbl 1104.65059
[31] Nolet, G., A Breviary of Seismic Tomography (2008), Cambridge: Cambridge University Press, Cambridge · Zbl 1166.86001
[32] Operto, S.; Gholami, Y.; Prieux, V.; Ribodetti, A.; Brossier, R.; Metivier, L.; Virieux, J., A guided tour of multiparameter full-waveform inversion with multicomponent data: from theory to practice, Leading Edge, 32, 1040-1054 (2013) · doi:10.1190/tle32091040.1
[33] Operto, S.; Miniussi, A.; Brossier, R.; Combe, L.; Métivier, L.; Monteiller, V.; Ribodetti, A.; Virieux, J., Efficient 3D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation, Geophys. J. Int., 202, 1362-1391 (2015) · doi:10.1093/gji/ggv226
[34] Operto, S.; Virieux, J.; Dessa, J-X; Pascal, G., Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: application to the eastern Nankai trough, J. Geophys. Res., 111 (2006) · doi:10.1029/2005jb003835
[35] Peters, B.; Herrmann, F. J., Constraints versus penalties for edge-preserving full-waveform inversion, Leading Edge, 36, 94-100 (2017) · doi:10.1190/tle36010094.1
[36] Pladys, A.; Brossier, R.; Li, Y.; Métivier, L., On cycle-skipping and misfit function modification for full-wave inversion: comparison of five recent approaches, Geophysics, 86, R563-R587 (2021) · doi:10.1190/geo2020-0851.1
[37] Plessix, R. E.; Perkins, C., Full waveform inversion of a deep water ocean bottom seismometer dataset, First Break, 28, 71-78 (2010) · doi:10.3997/1365-2397.2010013
[38] Plessix, R-E, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophys. J. Int., 167, 495-503 (2006) · doi:10.1111/j.1365-246x.2006.02978.x
[39] Pratt, R. G., Seismic waveform inversion in the frequency domain: I. Theory and verification in a physical scale model, Geophysics, 64, 888-901 (1999) · doi:10.1190/1.1444597
[40] Shen, X., High-resolution full-waveform inversion for structural imaging in exploration, SEG Technical Program Expanded Abstracts 2018, 1098-1102 (2018)
[41] Shipp, R. M.; Singh, S. C., Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data, Geophys. J. Int., 151, 325-344 (2002) · doi:10.1046/j.1365-246x.2002.01645.x
[42] Sirgue, L., Inversion de la forme d’onde dans le domaine fréquentiel de données sismiques grand offset, PhD Thesis (2003), Canada
[43] Stopin, A.; Plessix, R-É; Al Abri, S., Multiparameter waveform inversion of a large wide-Azimuth low-frequency land data set in Oman, Geophysics, 79, WA69-WA77 (2014) · doi:10.1190/geo2013-0323.1
[44] Strong, D.; Chan, T., Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19, S165-S187 (2003) · Zbl 1043.94512 · doi:10.1088/0266-5611/19/6/059
[45] Sun, H.; Demanet, L., Extrapolated full-waveform inversion with deep learning, Geophysics, 85, R275-R288 (2020) · doi:10.1190/geo2019-0195.1
[46] Symes, W. W., Migration velocity analysis and waveform inversion, Geophys. Prospect., 56, 765-790 (2008) · doi:10.1111/j.1365-2478.2008.00698.x
[47] Tape, C.; Liu, Q.; Maggi, A.; Tromp, J., Seismic tomography of the southern California crust based on spectral-element and adjoint methods, Geophys. J. Int., 180, 433-462 (2010) · doi:10.1111/j.1365-246x.2009.04429.x
[48] Tarantola, A., Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266 (1984) · doi:10.1190/1.1441754
[49] Tikhonov, A.; Goncharsky, A.; Stepanov, V.; Yagola, A., Numerical Methods for the Solution of Ill-Posed Problems (2013), Berlin: Springer, Berlin
[50] Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P., Bessel smoothing filter for spectral-element mesh, Geophys. J. Int., 209, 1489-1512 (2017) · doi:10.1093/gji/ggx103
[51] Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P., Bessel smoothing filter for spectral-element mesh, Geophys. J. Int., 209, 1489-1512 (2017) · doi:10.1093/gji/ggx103
[52] van Leeuwen, T.; Herrmann, F. J., Mitigating local minima in full-waveform inversion by expanding the search space, Geophys. J. Int., 195, 661-667 (2013) · doi:10.1093/gji/ggt258
[53] van Leeuwen, T.; Mulder, W. A., A correlation-based misfit criterion for wave-equation traveltime tomography, Geophys. J. Int., 182, 1383-1394 (2010) · doi:10.1111/j.1365-246x.2010.04681.x
[54] Virieux, J.; Asnaashari, A.; Brossier, R.; Métivier, L.; Ribodetti, A.; Zhou, W.; Grechka, V.; Wapenaar, K., Introduction to full waveform inversion, Encyclopedia of Exploration Geophysics, R1-1-R1-40 (2017), Society of Exploration Geophysics · doi:10.1190/1.9781560803027
[55] Wang, Y.; Rao, Y., Reflection seismic waveform tomography, J. Geophys. Res., 114, 1978-2012 (2009) · doi:10.1029/2008jb005916
[56] Warner, M.; Guasch, L., Adaptive waveform inversion: theory, Geophysics, 81, R429-R445 (2016) · doi:10.1190/geo2015-0387.1
[57] Weickert, J., Anisotropic Diffusion in Image Processing (1998), Stuttgart: Treubner Verlag, Stuttgart · Zbl 0886.68131
[58] Wu, R. S.; Toksöz, M. N., Diffraction tomography and multisource holography applied to seismic imaging, Geophysics, 52, 11-25 (1987) · doi:10.1190/1.1442237
[59] Xue, Z.; Alger, N.; Fomel, S., Full-waveform inversion using smoothing kernels, SEG Technical Program Expanded Abstracts 2016, 1358-1363 (2016), Society of Exploration Geophysicists
[60] Yang, P.; Brossier, R.; Métivier, L.; Virieux, J., Wavefield reconstruction in attenuating media: a checkpointing-assisted reverse-forward simulation method, Geophysics, 81, R349-R362 (2016) · doi:10.1190/geo2016-0082.1
[61] Yang, P.; Brossier, R.; Métivier, L.; Virieux, J.; Zhou, W., A time-domain preconditioned truncated newton approach to Visco-acoustic multiparameter full waveform inversion, SIAM J. Sci. Comput., 40, B1101-B1130 (2018) · Zbl 1394.65045 · doi:10.1137/17m1126126
[62] Yang, Y.; Engquist, B., Analysis of optimal transport and related misfit functions in full-waveform inversion, Geophysics, 83, A7-A12 (2018) · doi:10.1190/geo2017-0264.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.