×

Evidence of Tsallis entropy signature on medicane induced ambient seismic signals. (English) Zbl 1514.86016

Summary: The link between hurricanes or typhoons and their generated ambient noise has recently become a frontier topic in the field of applied seismology. In the Mediterranean region, infrequent tropical-like cyclones, known as Medicanes or Mediterranean hurricanes, with similar characteristics with hurricanes appear, with the most recent storm occurred on September 27–30, 2018 in South Greece, which characterized by gale winds, severe precipitation, and a low pressure center, accompanied with a spiral pattern of thunderstorms. In this work, we describe the Medicane’s induced ambient seismic noise fluctuations, as recorded in seismological station along to the path of the recent Medicane, in terms of non-extensive statistical physics. We found that the Medicane’s induced ambient seismic noise increments follow the \(q\)-Gaussian distribution. This indicates that Medicane induced ambient seismic noise’s fluctuations are not random and present long-term memory effects that could be described in terms of Tsallis entropy. Our results suggest that in the Medicane system that affected the Southwest Peloponnese the \(q\)-values of the induced ambient seismic noise’s fluctuations in the Kalamata (KLMT) seismological station located in Southwest Peloponnese are \(q \approx 1.67\), which corresponds to \(n = 2\) degrees of freedom system, indicating that Medicane induced ambient seismic noise fluctuations compose of two independent Gaussian random variables. For stations as that of APE (Apiranthos, Naxos island, Cyclades), where an attenuated Medicane was observed, a \(q\approx 1.57\) obtained, which is similar with that observed in the KNDR (Koundoura, South West Crete) seismological station, where the Medicane appears before its main organization as intensively observed in the KLMT station. For the CHAN (Chania, West Crete) station a \(q\approx 1.32\) was observed which corresponds to about 5 degrees of freedom indicating that Medicane induced ambient seismic noise fluctuations compose of about five independent Gaussian random variables, in agreement with the week intensity of Medicane observed in Chania.

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
62P35 Applications of statistics to physics
86A32 Geostatistics
Full Text: DOI

References:

[1] Gilmore, M. H., Microseisms and ocean storms, Bull. Seismol. Soc. Am., 36, 89-119 (1946)
[2] Ramirez, J. E., An experimental investigation of the nature and origin of microseisms at St. Louis, Missouri. Bull. Seismol. Soc. Am., 30, 35-84 (1940)
[3] Bromirski, P.; Kossin, J., Increasing hurricane wave power along the U.S. Atlantic and Gulf coasts, J. Geophys. Res., 113, Article C07012 pp. (2008)
[4] Ebeling, C. W.; Stein, S., Seismological identification and characterization of a large hurricane, Bull. Seismol. Soc. Am., 101, 1, 399-403 (2011)
[5] Davy, C.; Barruol, G.; Fontaine, F. R.; Sigloch, K.; Stutzmann, E., Tracking major storms from microseismic and hydroacoustic observations on the seafloor, Geophys. Res. Lett., 41, 8825-8831 (2014)
[6] Lin, J. M.; Lin, J.; Xu, M., Microseisms generated by super typhoon Megi in the western Pacific Ocean, J. Geophys. Res. Oceans, 122, 9518-9529 (2017)
[7] Gerstoft, P.; Shearer, P. M.; Harmon, N.; Zhang, J., Global P, PP, and PKP wave microseisms observed from distant storms, Geophys. Res. Lett, 35, L23306 (2008)
[8] Bromirski, P. D., Vibrations from the perfect storm, Geochem. Geophy. Geosyst., 2, Article 2000GC000119 pp. (2001)
[9] Gerstoft, P.; Fehler, M. C.; Sabra, K. G., When Katrina hit California, Geophys. Res. Lett., 33, L17308 (2006)
[10] Chi, W. C.; Chen, W. J.; Kuo, B. Y.; Dolenc, D., Seismic monitoring of western Pacific typhoons, Mar. Geophys. Res., 31, 239-251 (2010)
[11] Sufri, O.; Koper, K. D.; Burlacu, R.; Foy, B. D., Microseisms from superstorm sandy, Earth Planet. Sci. Lett., 402, 324-336 (2014)
[12] Gualtieria, L.; Camargoa, S. J.; Pascale, S.; E. Pons, F. M.; Ekström, G., The persistent signature of tropical cyclones in ambient seismic noise, Earth Planet. Sci. Lett., 484, 287-294 (2018)
[13] Davy, C.; Barruol, G.; Fontaine, F. R.; Sigloch, K.; Stutzmann, E., Tracking major storms from microseismic and hydroacoustic observations on the seafloor, Geophys. Res. Lett., 41, 8825-8831 (2014)
[14] Janssen, P., The Interaction of Ocean Waves and Wind (2004), Cambridge University Press
[15] Ardhuin, F.; Gualtieri, L.; Stutzmann, E., How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s, Geophys. Res. Lett., 42, 765-772 (2015)
[16] Hellenic National Meteorological Service (WWW.HNMS.GR).
[17] Pytharoulis, I., Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures, Atmos. Res., 208, 167-179 (2018)
[18] Nastos, P. T.; Karavana Papadimou, K.; Matsangouras, I. T., Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns, Atmos. Res., 208, 156-166 (2018)
[19] National Observatory of Athens, Institute for Environmental Research, National Observatory of Athens (IERSD/NOA) (http://www.meteo.gr).
[20] Hloupis, G.; Papadopoulos, I.; Makris, J. P.; Vallianatos, F., The South Aegean seismological network - HSNC, Adv. Geosci., 34, 15-21 (2013)
[21] Chatzopoulos, G.; Papadopoulos, I.; Vallianatos, F., The Hellenic Seismological Network of Crete (HSNC): Validation and results of the 2013 aftershock, Adv. Geosci., 41, 65-72 (2016)
[22] Hloupis, G.; Vallianatos, F., Wavelet-based rapid estimation of earthquake magnitude oriented to early warning, IEEE Geosci. Remote Sens., 10, 43-47 (2013)
[23] Evangelidis, C. P.; Melis, N. S., Ambient noise levels in Greece as recorded at the hellenic unified seismic network, Bull. Seismol. Soc. Am., 102, 6, 2507-2517 (2012)
[24] Telesca, L., Tsallis-based nonextensive analysis of the southern California seismicity, Entropy, 13, 7, 1267-1280 (2011) · Zbl 1302.86014
[25] Papadakis, G.; Vallianatos, F.; Sammonds, P., A nonextensive statistical physics analysis of the 1995 Kobe, Japan earthquake, Pure Appl. Geophys., 172, 1923-1931 (2015)
[26] Vallianatos, F.; Karakostas, V.; Papadimitriou, E., A non-extensive statistical physics view in the spatiotemporal properties of the 2003 (Mw6.2) Lefkada, Ionian Island Greece, aftershock sequence, Pure Appl. Geophys., 171, 7, 1343-1534 (2014)
[27] Vallianatos, F.; Michas, G.; Papadakis, G., Nonextensive statistical seismology: An overview, (Chelidze, T.; Telesca, L.; Vallianatos, F., Complexity of Seismic Time Series: Measurement and Application (2018), Elsevier), 25-59
[28] Vallianatos, F.; Benson, P.; Meredith, P.; Sammonds, P., Experimental evidence of a non-extensive statistical physics behaviour of fracture in triaxially deformed Etna basalt using acoustic emissions, Europhys. Lett., 97, 5, 58002 (2012)
[29] Saltas, V.; Vallianatos, F.; Triantis, D.; Stavrakas, I., Complexity in laboratory seismology: From electrical and acoustic emissions to fracture, (Chelidze, T.; Telesca, L.; Vallianatos, F., Complexity of Seismic Time Series: Measurement and Application (2018), Elsevier), 239-273
[30] Vallianatos, F.; Sammonds, P., A non-extensive statistics of the fault-population at the Valles Marineris extensional province, Mars, Tectonophysics, 509, 1-2, 50-54 (2011)
[31] Vilar, C. S.; Frana, G. S.; Silva, R.; Alcaniz, J. S., Nonextensivity in geological faults?, Physica A, 377, 285-290 (2007)
[32] Michas, G.; Vallianatos, F.; Sammonds, P., Statistical mechanics and scaling of fault populations with increasing strain in the Corinth Rift, Earth Planet. Sci. Lett., 431, 150-163 (2015)
[33] Koutalonis, I.; Vallianatos, F., Evidence of non-extensivity in Earth’s ambient noise, Pure Appl. Geophys., 174, 4369-4378 (2017)
[34] Vallianatos, F., A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A, 390, 10, 1773-1778 (2011)
[35] Vallianatos, F.; Sammonds, P., Is plate tectonics a case of non-extensive thermodynamics?, Physica A, 389, 21, 4989-4993 (2010)
[36] Vallianatos, F.; Michas, G.; Papadakis, G., A description of seismicity based on non extensive statistical physics: A review, (D’Amigo, Earthquakes and their Impact on Society (2016), Springer: Springer Berlin), 1-41
[37] Vallianatos, F.; Papadakis, G.; Michas, G., Generalized statistical mechanics approaches to earthquakes and tectonics, Proc. R. Soc. A Math. Phys. Eng. Sci., 472 (2016), 20160497
[38] Tsallis, C., Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (2009), Springer: Springer Berlin · Zbl 1172.82004
[39] HC/Hellenic Seismological Network of Crete. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HC.
[40] HL/National Observatory of Athens Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HL.
[41] Tanimoto, T.; Lamontagne, A., Temporal and spatial evolution of an on-land hurricane observed by seismic data, Geophys. Res. Lett., 41, 7532-7538 (2014)
[42] Beck, C., Dynamical foundations of non-extensive statistical mechanics, Phys. Rev. Lett., 87, 180601 (2001)
[43] Beck, C.; Cohen, E. G.D., Superstatistics, Physica A, 322, 267-275 (2003) · Zbl 1038.82049
[44] Beck, C., Superstatistics: theory and applications, Contin. Mech. Thermodyn., 16, 3, 293-304 (2004) · Zbl 1116.82312
[45] Beck, C.; Cohen, E. G.D.; Swinney, H. L., From time series tosuperstatistics, Phys. Rev. E (3), 72, 5, 1-8 (2005)
[46] Beck, C., Superstatistical Brownian motion, Progr. Theoret. Phys. Suppl., 162, 29-36 (2006) · Zbl 1104.82036
[47] Varotsos, C. A.; Efstathiou, M. N., Is there any long-term memory effect in the tropical cyclones?, Theor. Appl. Climatol., 114, 643-650 (2013)
[48] Varotsos, C. A.; Efstathiou, M. N.; Cracknell, A. P., Sharp rise in hurricane and cyclone count during the last century, Theor Appl Climatol., 119, 629-638 (2015)
[49] Sukov, A. I.; Soldatov, V. Y.; Krapivin, V. F.; Cracknell, A. P.; Varotsos, C. A., A sequential analysis method for the prediction of tropical hurricanes, Int. J. Remote Sens., 29, 9, 2787-2798 (2008)
[50] Krapivin, V. F.; Soldatov, V. Y.; Varotsos, C. A.; Cracknell, A. P., An adaptive information technology for the operative diagnostics of the tropical cyclones; solar-terrestriall coupling mechanisms, J. Atmos. Sol.-Terr. Phys., 89, 83-89 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.