×

Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting. (English) Zbl 1178.86010

Summary: In classical tsunami-generation techniques, one neglects the dynamic sea bed displacement resulting from fracturing of a seismic fault. The present study takes into account these dynamic effects. Earth’s crust is assumed to be a Kelvin-Voigt material. The seismic source is assumed to be a dislocation in a viscoelastic medium. The fluid motion is described by the classical nonlinear shallow water equations (NSWE) with time-dependent bathymetry. The viscoelastodynamic equations are solved by a finite-element method and the NSWE by a finite-volume scheme. A comparison between static and dynamic tsunami-generation approaches is performed. The results of the numerical computations show differences between the two approaches and the dynamic effects could explain the complicated shapes of tsunami wave trains.

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

FreeFem++

References:

[1] Benkhaldoun, F.; Quivy, L., A non homogeneous Riemann solver for shallow water and two phase flows, Flow Turbulence Combust., 76, 391-402 (2006) · Zbl 1108.76043
[2] Dutykh, D.; Dias, F., Water waves generated by a moving bottom, (Kundu, A., Tsunami and Nonlinear Waves (2007), Springer Verlag (Geo Sci.)), 63-94
[3] Dutykh, D.; Dias, F.; Kervella, Y., Linear theory of wave generation by a moving bottom, C. R. Acad. Sci. Paris Ser. I, 343, 499-504 (2006) · Zbl 1102.76005
[4] Freund, L. B.; Barnett, D. M., A two-dimensional analysis of surface deformation due to dip-slip faulting, Bull. Seism. Soc. Am., 66, 667-675 (1976)
[5] Ghidaglia, J.-M.; Kumbaro, A.; Le Coq, G., On the numerical solution to two fluid models via cell centered finite volume method, Eur. J. Mech. B/Fluids, 20, 841-867 (2001) · Zbl 1059.76041
[6] Ghidaglia, J.-M.; Pascal, F., The normal flux method at the boundary for multidimensional finite volume approximations in CFD, Eur. J. Mech. B/Fluids, 24, 1-17 (2005) · Zbl 1060.76076
[7] Hammack, J., A note on tsunamis: their generation and propagation in an ocean of uniform depth, J. Fluid Mech., 60, 769-799 (1973) · Zbl 0273.76010
[8] Haskell, N. A., Elastic displacements in the near-field of a propagating fault, Bull. Seism. Soc. Am., 59, 865-908 (1969)
[9] F. Hecht, O. Pironneau, A. Le Hyaric, K. Ohtsuka, FreeFem++, Laboratoire JL Lions, University of Paris VI, France.; F. Hecht, O. Pironneau, A. Le Hyaric, K. Ohtsuka, FreeFem++, Laboratoire JL Lions, University of Paris VI, France.
[10] Kajiura, K., Tsunami source, energy and the directivity of wave radiation, Bull. Earthquake Res. Inst., 48, 835-869 (1970)
[11] Kervella, Y.; Dutykh, D.; Dias, F., Comparison between three-dimensional linear and nonlinear tsunami generation models, Theor. Comput. Fluid Dyn., 21, 245-269 (2007) · Zbl 1161.76440
[12] Madariaga, R., Radiation from a finite reverse fault in half space, Pure Appl. Geophys., 160, 555-577 (2003)
[13] Mansinha, L.; Smylie, D. E., The displacement fields of inclined faults, Bull. Seism. Soc. Am., 61, 1433-1440 (1971) · Zbl 0227.73169
[14] Masterlark, T., Finite element model predictions of static deformation from dislocation sources in a subduction zone: sensivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions, J. Geophys. Res., 108, 2540 (2003)
[15] Megna, A.; Barba, S.; Santini, S., Normal-fault stress and displacement through finite-element analysis, Ann. Geophys., 48, 1009-1016 (2005)
[16] Ohmachi, T.; Tsukiyama, H.; Matsumoto, H., Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting, Bull. Seism. Soc. Am., 91, 1898-1909 (2001)
[17] Okada, Y., Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 75, 1135-1154 (1985)
[18] Okal, E. A.; Synolakis, C. E., Source discriminants for near-field tsunamis, Geophys. J. Int., 158, 899-912 (2004)
[19] Okumura, Y.; Kawata, Y., Effects of rise time and rupture velocity on tsunami, (Proc. 17th Int. Offshore and Polar Engineering Conf., vol. III (2007))
[20] J. Quiblier, Propagation des ondes en géophysique et en géotechnique, Modélisation par méthodes de Fourier, Editions Technip, Paris, 1997.; J. Quiblier, Propagation des ondes en géophysique et en géotechnique, Modélisation par méthodes de Fourier, Editions Technip, Paris, 1997.
[21] Synolakis, C. E.; Bernard, E. N., Tsunami science before and beyond Boxing Day 2004, Philos. Trans. R. Soc. A, 364, 2231-2265 (2006)
[22] Tadepalli, S.; Synolakis, C. E., The runup of N-waves, Proc. R. Soc. Lond. A, 445, 99-112 (1994) · Zbl 0807.76011
[23] Tadepalli, S.; Synolakis, C. E., Model for the leading waves of tsunamis, Phys. Rev. Lett., 77, 2141-2144 (1996)
[24] Todorovska, M. I.; Trifunac, M. D., Generation of tsunamis by a slowly spreading uplift of the sea floor, Soil Dyn. Earthquake Eng., 21, 151-167 (2001)
[25] Titov, V. V.; Synolakis, C. E., Numerical modeling of tidal wave runup, J. Waterway Port Coast. Ocean Eng., 124, 157-171 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.