×

Effective viscoelastic representation of gas-hydrate bearing sediments from finite-element harmonic experiments. (English) Zbl 1477.65242

Summary: We present a novel numerical upscaling technique for modeling the wave response of gas-hydrate bearing sediments composed of a rock frame, gas-hydrate and water, where the hydrate consists of ice-like lattice of water molecules with methane trapped inside. These sediments are highly heterogeneous at mesoscopic scales, much smaller than the wavelength but much larger than the pore size, inducing substantial seismic wave attenuation and dispersion due to mode conversions. The proposed numerical upscaling procedure simulates the wave-induced fluid-flow loss mechanism by computing an average effective viscoelastic medium having the same behavior of the original sediment. The method determines the complex stiffness coefficients associated with the viscoelastic medium by solving numerically boundary value problems formulated in the space-frequency domain, representing compressibility and shear experiments. The procedure is applied to composite media with regions of different amounts of hydrate with patchy or periodic-layer distributions, which define an anisotropic effective viscoelastic medium, respectively. The examples demonstrate that variations in hydrate content induce strong attenuation and dispersion effects on seismic waves due to the mesoscopic loss mechanism.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
86A60 Geological problems
76S05 Flows in porous media; filtration; seepage
86A15 Seismology (including tsunami modeling), earthquakes

References:

[1] Ecker, C.; Dvorkin, J.; Nur, AM, Estimating the amount of gas hydrate and free gas from marine sediments, Geophysics, 65, 2, 565-573 (2000) · doi:10.1190/1.1444752
[2] Biot, MA, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 1482-1498 (1962) · Zbl 0104.21401 · doi:10.1063/1.1728759
[3] Carcione, JM; Seriani, G., Seismic velocities in permafrost, Geophys. Prosp., 46, 441-454 (1998) · doi:10.1046/j.1365-2478.1998.1000333.x
[4] Carcione, JM; Tinivella, U., Bottom-simulating reflectors: Seismic velocities and AVO effects, Geophysics, 65, 1, 54-67 (2000) · doi:10.1190/1.1444725
[5] Carcione, JM; Seriani, G., Wave simulation in frozen porous media, J. Comput. Phys., 170, 676-695 (2001) · Zbl 1051.76068 · doi:10.1006/jcph.2001.6756
[6] Carcione, JM; Santos, JE; Ravazzoli, CL; Helle, HB, Wave simulation in partially frozen porous media with fractal freezing conditions, J. Appl. Phys., 94, 12, 7839-7847 (2003) · doi:10.1063/1.1606861
[7] Carcione, JM; Helle, HB; Santos, JE; Ravazzoli, CL, A constitutive equation and generalized Gassmann modulus for multi-mineral porous media, Geophysics, 70, 2, N17-N26 (2005) · doi:10.1190/1.1897035
[8] Carcione, J.M.: Wave Fields in Real Media. Theory and numerical simulation of wave propa-gation in anisotropic, anelastic, porous and electromagnetic media, 3rd ed., extended and revised Elsevier Science Oxford (2014)
[9] Frankel, A.; Clayton, RW, Finite difference simulation of seismic wave scattering: implications for the propagation of short period seismic waves in the crust and models of crustal heterogeneity, J. Geophys. Res., 91, 6465-6489 (1986) · doi:10.1029/JB091iB06p06465
[10] Guerin, G.: Modeling of acoustic wave dissipation in gas-hydrate bearing sediments. Geochemistry, Geophysics, Geosystems 6 (7). doi:10.1029/2005GC000918 (2005)
[11] Krzikalla, F.; Müller, TM, Anisotropic p-SV-wave dispersion and attenuation due to interlayer flow in thinly layered porous rocks, Geophysics, 76, WA135 (2011) · doi:10.1190/1.3555077
[12] Leclaire, P.; Cohen-Tenoudji, F.; Aguirre Puente, J., Extension of Biot’s theory to wave propagation in frozen porous media, J. Acoust. Soc. Amer., 96, 3753-3767 (1994) · doi:10.1121/1.411336
[13] Leclaire, P.; Cohen-Tenoudji, F.; Aguirre Puente, J., Observation of two longitudinal and two transverse waves in a frozen porous medium, J. Acoust. Soc. Am., 97, 2052-2055 (1995) · doi:10.1121/1.411997
[14] Lee, MW; Collet, TS, Elastic properties of gas hydrate-bearing sediments, Geophysics, 66, 3, 763-771 (2001) · doi:10.1190/1.1444966
[15] Lee, MW, Biot-gassmann theory for velocities of gas hydrate-bearing sediments, Geophysics, 67, 6, 1711-1719 (2002) · doi:10.1190/1.1527072
[16] Linga, P.; Clarke, MA; Englezos, P., Gas hydrates and applications, Part B, 35, 1353-1608 (2016)
[17] Santos, JE; Ravazzoli, CL; Carcione, JM, A model for wave propagation in a composite solid matrix saturated by a single-phase fluid, J. Acoust. Soc. Am., 115, 6, 2749-2760 (2004) · doi:10.1121/1.1710500
[18] Santos, JE; Ravazzoli, CL; Gauzellino, PM; Carcione, JM, A numerical upscaling procedure to estimate effective bulk and shear moduli in heterogeneous fluid-saturated porous media, Comp. Methods Appl.Mech. Eng., 198, 2067-2077 (2009) · Zbl 1227.74022 · doi:10.1016/j.cma.2009.02.003
[19] Santos, JE; Carcione, JM, Finite-element harmonic experiments to model fractured induced anisotropy in poroelastic media, Comp. Methods Appl.Mech. Eng., 283, 1189-1213 (2015) · Zbl 1423.74917 · doi:10.1016/j.cma.2014.08.016
[20] Santos, JE; Gauzellino, PM, Numerical Simulation in Applied Geophysics (2017), Birkhauser: Lecture Notes in Geosystems Mathematics and Computing, Birkhauser
[21] Waite, WF; Santamarina, JC; Cortes, DD; Dugan, B.; Espinoza, DN; Germaine, J.; Jang, J.; Jung, JW; Kneafsey, TJ; Shin, H.; Soga, K.; Winters, WJ; Yun, TS, Physical porperties of hydrate-bearing sediments, Rev. Geophys., 47, RG4003 (2009) · doi:10.1029/2008RG000279
[22] White, JE; Mikhaylova, NG; Lyakhovitskiy, FM, Low-frequency seismic waves in fluid saturated layered rocks, Phys. Solid Earth, 11, 654-659 (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.