×

Wave propagation in fractured-porous media with different percolation length of fracture systems. (English) Zbl 1450.74017

Summary: We present a numerical investigation of the fracture connectivity effect on attenuation of seismic waves propagating in fractured porous fluid-saturated media. We design an algorithm for statistical modeling to generate fracture systems with prescribed percolation length. Generated statistical realizations of the fractured systems are then analyzed to evaluate the fracture-cluster length-scale. After that for all statistical realizations we simulated wave propagation observing formation of the wave-induced fluid flows. In the case of permeable background, seismic attenuation is affected by the branch length; i.e., attenuation increases with the increase of the branches length. If the permeability of the background material is low, no fracture-to-background wave-induced fluid flows appear, whereas strong fracture-to-fracture fluid flows may take place. However, fracture-to-fracture fluid flows are local and depend only on the parameters of the individual fractures and their intersections. As a result, the effect of the fracture-to-fracture fluid flows on seismic attenuation is relatively low, even smaller than the attenuation due to scattering.

MSC:

74J10 Bulk waves in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74R99 Fracture and damage
74L05 Geophysical solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
76S05 Flows in porous media; filtration; seepage
86A15 Seismology (including tsunami modeling), earthquakes

Software:

FracSim3D
Full Text: DOI

References:

[1] T. M. Muller, B. Gurevich and M. Lebedev, ‘‘Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review,’’ Geophysics 75, 75A147-75A164 (2010).
[2] Rubino, J. G.; Muller, T. M.; Guarracino, L.; Milani, M.; Holliger, K., Seismoacoustic signatures of fracture connectivity, J. Geophys. Res.: Solid Earth, 119, 2252-2271 (2014)
[3] Caspari, E.; Novikov, M.; Lisitsa, V.; Barbosa, N. D.; Quintal, B.; Rubino, J. G.; Holliger, K., Attenuation mechanisms in fractured fluid-saturated porous rocks: A numerical modelling study, Geophys. Prospect., 67, 935-955 (2019)
[4] Kong, L.; Gurevich, B.; Zhang, Y.; Wang, Y., Effect of fracture fill on frequency-dependent anisotropy of fractured porous rocks, Geophys. Prospect., 65, 1649-1661 (2017)
[5] Guo, J.; Rubino, J. G.; Glubokovskikh, S.; Gurevich, B., Effects of fracture intersections on seismic dispersion: Theoretical predictions versus numerical simulations, Geophys. Prospect., 65, 1264-1276 (2017)
[6] Hunziker, J.; Favino, M.; Caspari, E.; Quintal, B.; Rubino, J. G.; Krause, R.; Holliger, K., Seismic attenuation and stiffness modulus dispersion in porous rocks containing stochastic fracture networks, J. Geophys. Res.: Solid Earth, 123, 125-143 (2018)
[7] Xu, C.; Dowd, P., A new computer code for discrete fracture network modelling, Comput. Geosci., 36, 292-301 (2010)
[8] Deng, H.; Fitts, J. P.; Peters, C. A., Quantifying fracture geometry with x-ray tomography: Technique of iterative local thresholding (TILT) for 3D image segmentation, Comput. Geosci., 20, 231-244 (2016)
[9] Robinson, P., Connectivity of fracture systems—a percolation theory approach, J. Phys. A: Math. Gen., 16, 605-614 (1983)
[10] Berkowitz, B., Analysis of fracture network connectivity using percolation theory, Math. Geol., 27, 467-483 (1995)
[11] Tran, N., Simulated annealing technique in discrete fracture network inversion: Optimizing the optimization, Comput. Geosci., 11, 249-260 (2007) · Zbl 1124.65053
[12] Berg, M. D.; Cheong, O.; Kreveld, M. V.; Overmars, M., Computational Geometry: Algorithms and Applications (2008), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1140.68069
[13] Masson, Y. J.; Pride, S. R., Finite-difference modeling of biot’s poroelastic equations across all frequencies, Geophysics, 75, N33-N41 (2010)
[14] Biot, M. A., Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range, J. Acoust. Soc. Am., 28, 168-178 (1956)
[15] Johnson, D. L.; Koplik, J.; Dashen, R., Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., 176, 379-402 (1987) · Zbl 0612.76101
[16] Gurevich, B.; Pevzner, R., How frequency dependency of q affects spectral ratio estimates, Geophysics, 80, A39-A44 (2015)
[17] Xie, H.; Wang, J. A.; Kwaśniewski, M. A., Multifractal characterization of rock fracture surfaces, Int. J. Rock Mech. Mining Sci., 36, 19-27 (1999)
[18] M. Tanase and R. Veltcamp, ‘‘Polygon decomposition based on the straight line polygon,’’ in Proceedings of the 19th Annual Symposium on Computational Geometry (2003), pp. 58-67. · Zbl 1375.68170
[19] J. M. Carcione, C. Morency, and J. E. Santos ‘‘Computational poroelasticity—a review,’’ Geophysics 75, 75A229-75A243 (2010).
[20] Virieux, J., P-sv wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 51, 889-901 (1986)
[21] A. A. Samarskii, The Theory of Difference Schemes, Vol. 240 of Pure and Applied Mathematics (CRC, Boca Raton, FL, 2001). · Zbl 0971.65076
[22] Lisitsa, V.; Podgornova, O.; Tcheverda, V., On the interface error analysis for finite difference wave simulation, Comput. Geosci., 14, 769-778 (2010) · Zbl 1201.65157
[23] Moczo, P.; Kristek, J.; Galis, M., The Finite-Difference Modelling of Earthquake Motion: Waves and Ruptures (2014), Cambridge, UK: Cambridge Univ. Press, Cambridge, UK · Zbl 1317.86001
[24] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200 (1994) · Zbl 0814.65129
[25] Martin, R.; Komatitsch, D.; Ezziani, A., An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media, Geophysics, 73, T51-T61 (2008)
[26] Lisitsa, V., Optimal discretization of PML for elasticity problems, Electron. Trans. Numer. Anal., 30, 258-277 (2008) · Zbl 1170.74052
[27] Rytov, S. M.; Kravtsov, Y. A.; Tatarskii, V. I., Principles of Statistical Radiophysics. 2. Correlation Theory of Random Processes (1988), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0668.60002
[28] Lebedev, M.; Zhang, Y.; Sarmadivaleh, M.; Barifcani, A.; Al-Khdheeawi, E.; Iglauer, S., Carbon geosequestration in limestone: Pore-scale dissolution and geomechanical weakening, Int. J. Greenhouse Gas Control, 66, 106-119 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.