×

Time-invariant Radon transform by generalized Fourier slice theorem. (English) Zbl 1360.44002

Summary: Time-invariant Radon transforms play an important role in many fields of imaging sciences, whereby a function is transformed linearly by integrating it along specific paths, e.g. straight lines, parabolas, etc. In the case of linear Radon transform, the Fourier slice theorem establishes a simple analytic relationship between the 2-D Fourier representation of the function and the 1-D Fourier representation of its Radon transform. However, the theorem can not be utilized for computing the Radon integral along paths other than straight lines. We generalize the Fourier slice theorem to make it applicable to general time-invariant Radon transforms. Specifically, we derive an analytic expression that connects the 1-D Fourier coefficients of the function to the 2-D Fourier coefficients of its general Radon transform. For discrete data, the model coefficients are defined over the data coefficients on non-Cartesian points. It is shown numerically that a simple linear interpolation provide satisfactory results and in this case implementations of both the inverse operator and its adjoint are fast in the sense that they run in \(O(N \log N)\) flops, where \(N\) is the maximum number of samples in the data space or model space. These two canonical operators are utilized for efficient implementation of the sparse Radon transform via the split Bregman iterative method. We provide numerical examples showing high-performance of this method for noise attenuation and wavefield separation in seismic data.

MSC:

44A12 Radon transform
86A15 Seismology (including tsunami modeling), earthquakes

References:

[1] A. Averbuch, A framework for discrete integral transformation I- the pseudo-polar Fourier transform,, SIAM J. of Scientific Computing, 30, 764 (2008) · Zbl 1167.65075 · doi:10.1137/060650283
[2] A. Averbuch, A framework for discrete integral transformation II- the 2D discrete Radon transform,, SIAM J. of Scientific Computing, 30, 785 (2008) · Zbl 1167.65076 · doi:10.1137/060650301
[3] S. Basu, \(O(N^3 \log N)\) backprojection algorithm for the 3D Radon transform,, IEEE Trans. Medical Imaging, 21, 76 (2002)
[4] A. Beck, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,, SIAM J. Imaging Sciences, 2, 183 (2009) · Zbl 1175.94009 · doi:10.1137/080716542
[5] G. Beylkin, Discrete Radon transform,, IEEE Transactions on Acoustics, 35, 162 (1987) · doi:10.1109/TASSP.1987.1165108
[6] P. W. Cary, The simplest discrete Radon transform,, 68th Annual International Meeting, 1999 (1998) · doi:10.1190/1.1820335
[7] R. H. Chan, Conjugate gradient methods for Toeplitz systems,, SIAM Review, 38, 427 (1996) · Zbl 0863.65013 · doi:10.1137/S0036144594276474
[8] S. Chen, Atomic decomposition by basis pursuit,, SIAM J. of Scientific Computation, 20, 33 (1998) · Zbl 0919.94002 · doi:10.1137/S1064827596304010
[9] A. Gholami, Nonconvex compressed sensing with frequency mask for seismic data reconstruction and denoising,, Geophysical Prospecting, 62, 1389 (2014)
[10] A. Gholami, Deconvolutive Radon transform,, Geophysics, 82 (2017) · doi:10.1190/geo2016-0377.1
[11] T. Goldstein, The split Bregman method for l1 regularized problems,, SIAM J. Imag. Sci., 2, 323 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[12] D. Hampson, Inverse velocity stacking for multiple elimination,, 56th Annual International Meeting, 422 (1986) · doi:10.1190/1.1893060
[13] P. E. Hart, How the Hough transform was invented,, IEEE Signal Processing Magazine, 26, 18 (2008)
[14] P. Herrmann, De-aliased, high-resolution Radon transforms,, 70th Annual International Meeting, 19, 1953 (2000) · doi:10.1190/1.1815818
[15] K. Hokstad, 3D surface-related multiple elimination using parabolic sparse inversion,, Geophysics, 71 (2006) · doi:10.1190/1.2345050
[16] J. Hsieh, <em>Computed Tomography Principles, Design, Artifacts, and Recent Advances</em>,, 2nd Edition (2015) · doi:10.1117/3.2197756
[17] J. Hu, A fast butterfly algorithm for generalized Radon transforms,, Geophysics, 78 (2013) · doi:10.1190/geo2012-0240.1
[18] C. Kostov, Toeplitz structure in slant-stack inversion,, SEG Technical Program Expanded Abstracts, 1618 (1990) · doi:10.1190/1.1890075
[19] W. Lu, An accelerated sparse time-invariant Radon transform in the mixed frequency-time domain based on iterative 2D model shrinkage,, Geophysics, 78 (2013) · doi:10.1190/geo2012-0439.1
[20] R. M. Mersereau, Recovering multidimensional signals from their projections,, Computer Graphics and Image Processing, 2, 179 (1973) · doi:10.1016/0146-664X(73)90026-9
[21] V. Nikitin, Fast hyperbolic Radon transform by log-polar convolutions,, SEG Technical Program Expanded Abstracts, 4534 (2016) · doi:10.1190/segam2016-13943010.1
[22] M. D. Sacchi, Fast high resolution parabolic Radon transform,, SEG Technical Program Expanded Abstracts, 1477 (1999) · doi:10.1190/1.1820798
[23] M. Sacchi, High-resolution velocity gathers and offset space reconstruction,, Geophysics, 60, 1169 (1995) · doi:10.1190/1.1443845
[24] M. Sacchi, Improving resolution of Radon operators using a model re-weighted least squares procedure,, Journal of Seismic Exploration, 4, 315 (1995)
[25] M. Schonewille, Parabolic Radon transform, sampling and efficiency,, Geophysics, 66, 667 (2001) · doi:10.1190/1.1444957
[26] J. R. Thorson, Velocity-stack and slant-stack stochastic inversion,, Geophysics, 50, 2727 (1985) · doi:10.1190/1.1441893
[27] D. Trad, Latest views of the sparse Radon transform,, Geophysics, 68, 386 (2003) · doi:10.1190/1.1543224
[28] S. Treitel, Plane-wave decomposition of seismograms,, Geophysics, 47, 1375 (1982) · doi:10.1190/1.1441287
[29] O. Yilmaz, Velocity stack processing,, SEG Technical Program Expanded Abstracts, 1013 (1988) · doi:10.1190/1.1892186
[30] O. Yilmaz, <em>Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data</em>,, 2nd edition (2001) · doi:10.1190/1.9781560801580
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.