×

Moment-curvature damage model for bridges subjected to seismic loads. (English) Zbl 1123.74044

Summary: The evaluation of the damage caused by horizontal loads, such as seismic action, to existing bridges has received an important attention in recent years, because it is the first step towards reducing casualties and economic losses. In damage detection and evaluation, the application of simple and reliable models has been prioritized, because they are necessary in further multi-analyses required by Monte Carlo simulations. A simplified moment-curvature damage evaluation model, capable of evaluating the expected seismic behavior of RC highway bridges is proposed in this paper. The damage of a pier is related to the reduction of the cross-sectional moment of inertia of bridge piers. Therefore, the evaluation of the damage is based on a nonlinear analysis determining the changes of the mentioned moment of inertia. The model was validated using experimental results obtained at JRC Ispra for Warth Bridge of Austria, and also by using FEM analyses performed by other authors for the same bridge.

MSC:

74R99 Fracture and damage
74H50 Random vibrations in dynamical problems in solid mechanics
86A15 Seismology (including tsunami modeling), earthquakes

Software:

ABAQUS
Full Text: DOI

References:

[1] ABAQUS. User Manual, Hibbit Karlsson and Sorensen, HKS, Version 5.8, 1999.; ABAQUS. User Manual, Hibbit Karlsson and Sorensen, HKS, Version 5.8, 1999.
[2] R. Aguiar, A.H. Barbat, Daño sı´smico en estructuras de hormigón armado, Universidad Politécnica del Ejercito, Quito, Ecuador, 1997.; R. Aguiar, A.H. Barbat, Daño sı´smico en estructuras de hormigón armado, Universidad Politécnica del Ejercito, Quito, Ecuador, 1997.
[3] S. Arman, M. Grigoriu, Markov model for local and global damage indexes in seismic analysis, NCEER-94-0003, National Center for Earthquake Engineering Research, 1994.; S. Arman, M. Grigoriu, Markov model for local and global damage indexes in seismic analysis, NCEER-94-0003, National Center for Earthquake Engineering Research, 1994.
[4] Barbat, A. H.; Oller, S.; Oñate, E.; Hanganu, A., Viscous damage model for Timoshenko beam structures, Int. J. Solids Struct., 34, 30, 3953-3976 (1997) · Zbl 0942.74633
[5] Car, E.; Oller, S.; Oñate, E., An anisotropic elastoplastic constitutive model for large strain analysis of fiber reinforced composite materials, Comput. Methods Appl. Mech. Engrg., 185, 2-4, 245-277 (2000) · Zbl 0973.74028
[6] Chaboche, J., Continuum damage mechanics. Part I. General concepts, J. Appl. Mech., 55, 59-64 (1988)
[7] Chaboche, J., Continuum damage mechanics. Part II. Damage growth, J. Appl. Mech., 55, 65-72 (1988)
[8] Clough, R. W.; Penzien, J., Dynamics of Structures (1992), McGraw-Hill
[9] G. Duma, S. Seren, Determination of basic seismological parameters for the Warth Bridge site, Technical report CIMG, Department of Geophysics, Austria, 1998.; G. Duma, S. Seren, Determination of basic seismological parameters for the Warth Bridge site, Technical report CIMG, Department of Geophysics, Austria, 1998.
[10] Faria, R.; Vila Pouca, N.; Delgado, R., Simulation of the cyclic behaviour of r/c rectangular hollow section bridge piers via a detailed numerical model, J. Earthquake Engrg., 8, 5, 725-748 (2004)
[11] R.G. Flesch, P.H. Kirkegaard, C. Kramer, M. Brughmans, G.P. Roberts, M. Gorozzo, Dynamic in situ test of bridge WARTH/Austria, Technical report, TU-Graz, TUG TA 99/0125, 1999.; R.G. Flesch, P.H. Kirkegaard, C. Kramer, M. Brughmans, G.P. Roberts, M. Gorozzo, Dynamic in situ test of bridge WARTH/Austria, Technical report, TU-Graz, TUG TA 99/0125, 1999.
[12] C. Gómez-Soberón, S. Oller, A. Barbat, Seismic vulnerability of bridges using simple models, Monographs of Seismic Engineering, Monograph series in Earthquake Engineering, CIMNE IS-47, International Center of Numerical Methods in Engineering, Barcelona, Spain, 2002.; C. Gómez-Soberón, S. Oller, A. Barbat, Seismic vulnerability of bridges using simple models, Monographs of Seismic Engineering, Monograph series in Earthquake Engineering, CIMNE IS-47, International Center of Numerical Methods in Engineering, Barcelona, Spain, 2002.
[13] D. Hull, Materiales compuestos, Reverté Editorial, Spain, 1987.; D. Hull, Materiales compuestos, Reverté Editorial, Spain, 1987.
[14] Hurtado, J. E.; Barbat, A. H., Monte Carlo techniques in computational stochastic mechanics, Arch. Comput. Methods Engrg., 5, 1, 3-30 (1998)
[15] Kachanov, L. M., Time of rupture process under creep conditions, Izvestia Akaademii Nauk; Otd Tech Nauk, 8, 26-31 (1958) · Zbl 0107.18501
[16] Lemaitre, J., A Course on Damage Mechanics (1992), Springer · Zbl 0756.73002
[17] Lemaitre, J.; Chaboche, J. L., Aspects phénoménologiques de la rupture par endommagement, J. Appl. Mech., 2, 317-365 (1978)
[18] W.A. Lenhard, Regional earthquake hazard in Austria, in: Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, Austria, vol. I, 1994, pp. 63-68.; W.A. Lenhard, Regional earthquake hazard in Austria, in: Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, Austria, vol. I, 1994, pp. 63-68.
[19] Lubliner, J.; Oliver, J.; Oller, S.; Oñate, E., A plastic damage model for non linear analysis of concrete, Int. Solids Struct., 25, 3, 299-326 (1989)
[20] Luccioni, B.; Oller, S., A directional damage model, Comput. Methods Appl. Mech. Engrg., 192, 9-10, 1119-1145 (2003) · Zbl 1026.74003
[21] Luccioni, B.; Oller, S.; Danesi, R., Coupled plastic-damaged model, Comput. Methods Appl. Mech. Engrg., 129, 1-2, 81-89 (1996) · Zbl 0860.73047
[22] Maugin, G. A., The Thermomechanics of Plasticity and Fracture (1992), Cambridge University Press · Zbl 0753.73001
[23] Menegotto, M.; Pinto, P. E., Slender RC compressed members in biaxial bending, J. Struct. Div., ASCE, 103, 3, 587-605 (1977)
[24] J. Oliver, M. Cervera, S. Oller, J. Lubliner, Isotropic damage models and smeared crack analysis of concrete, in: Second International Conference on Computer Aided Analysis and Design of Concrete Structures, Austria, vol. 2, 1990, pp. 945-958.; J. Oliver, M. Cervera, S. Oller, J. Lubliner, Isotropic damage models and smeared crack analysis of concrete, in: Second International Conference on Computer Aided Analysis and Design of Concrete Structures, Austria, vol. 2, 1990, pp. 945-958.
[25] Oller, S.; Car, E.; Lubliner, J., Definition of a general implicit orthotropic yield criterion, Comput. Methods Appl. Mech. Engrg., 192, 7-8, 895-912 (2003) · Zbl 1112.74325
[26] Oller, S.; Luccioni, B.; Barbat, A., Un método de evaluación del daño sı´smico de estructuras de hormigón armado, Revista Internacional de Métodos Numéricos para el Cálculo y Diseño en Ingenierı´a, 12, 2, 215-238 (1996)
[27] S. Oller, A.H. Barbat, E. Oñate, A. Hanganu, A damage model for the seismic analysis of buildings structures, in: 10th World Conference on Earthquake Engineering, 1992, pp. 2593-2598.; S. Oller, A.H. Barbat, E. Oñate, A. Hanganu, A damage model for the seismic analysis of buildings structures, in: 10th World Conference on Earthquake Engineering, 1992, pp. 2593-2598.
[28] Oller, S.; Oñate, E.; Miquel, J.; Botello, S., A plastic damage constitutive model for composite material, Int. J. Solids Struct., 33, 17, 2501-2518 (1996) · Zbl 0909.73065
[29] Oller, S.; Salomón, O.; Oñate, E., A continuum mechanics model for mechanical fatigue analysis, Comput. Mater. Sci., 32, 175-195 (2005)
[30] ÖNORM B4015-2, Belastungsannhmen im bauwesen. Außergenwöhnliche einwirkungen erdbebeneinwirkungen grundlagen, 1998.; ÖNORM B4015-2, Belastungsannhmen im bauwesen. Außergenwöhnliche einwirkungen erdbebeneinwirkungen grundlagen, 1998.
[31] G.F. Panza, F. Romanelli, F. Vaccari, Effects on bridge seismic response of asynchronous motion at the base of the bridge piers, Report 5/1, 2, 3F, International Center of Theoretical Physics (ICTP), Trieste, Italy, 2001.; G.F. Panza, F. Romanelli, F. Vaccari, Effects on bridge seismic response of asynchronous motion at the base of the bridge piers, Report 5/1, 2, 3F, International Center of Theoretical Physics (ICTP), Trieste, Italy, 2001.
[32] Park, Y. J.; Ang, A. H., Mechanistic seismic damage model for reinforced concrete, J. Struct. Engrg., 111, 4, 722-739 (1985)
[33] Petrangeli, M.; Pinto, P. E.; Ciampi, V., Fiber element for cyclic bending and shear of RC structures. I: Theory, J. Engrg. Mech., ASCE, 125, 9, 994-1001 (1999)
[34] Petrangeli, M., Fiber element for cyclic bending and shear of RC structures. II: Verification, J. Engrg. Mech. ASCE, 125, 9, 1002-1009 (1999)
[35] A. Pinto, J. Molina, G. Tsionis, Cyclic Test on a Large Scale Model of an Existing Short Bridge Pier (Warth Bridge-Pier A70), EUR Report, Joint Research Centre, ISIS, Ispra, Italy.; A. Pinto, J. Molina, G. Tsionis, Cyclic Test on a Large Scale Model of an Existing Short Bridge Pier (Warth Bridge-Pier A70), EUR Report, Joint Research Centre, ISIS, Ispra, Italy.
[36] J.M. Puig, E. Car, S. Oller, Solution for the inelastic buckling of long fiber reinforced composite materials, in: Composites in Construction International Conference, A. Balkema, 2001, pp. 119-124.; J.M. Puig, E. Car, S. Oller, Solution for the inelastic buckling of long fiber reinforced composite materials, in: Composites in Construction International Conference, A. Balkema, 2001, pp. 119-124.
[37] Simo, J.; Ju, J., Strain and stress based continuum damage models—I. Formulation, Int. J. Solids Struct., 23, 821-840 (1987) · Zbl 0634.73106
[38] Simo, J.; Ju, J., Strain and stress based continuum damage models—II. Computational aspects, Int. J. Solids Struct., 23, 841-869 (1987) · Zbl 0634.73107
[39] Zienkiewicz, O.; Taylor, R., The Finite Element Method, vols. 1 and 2 (1988), McGraw-Hill
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.