×

A seasonal model for West Nile virus. (English) Zbl 1384.92058

Summary: West Nile virus (WNV) is maintained in transmission cycles involving bird reservoir hosts and mosquito vectors. While several aspects of the infection cycle have been explored through mathematical models, relatively little attention has been paid to the theoretical effect of seasonal changes in host and vector densities. Here we consider a model for the transmission dynamics of WNV in a temperate climate, where mosquitoes are not active during winters, so that infection dynamics can be described through a sequence of discrete growing seasons. Within-season host and vector demography is described through phenomenological functions of time describing fertility, mortality and migration. Over-wintering of infection is assumed to occur through diapausing mosquito females, with or without vertical transmission.
We introduce a parameter \(S_0\) that, similarly to \(R_0\) but easier to compute, yields a threshold condition for infection persistence in this semi-discrete setting. Then we study the possible dynamical behavior of the model, by exploring parameter values through a Latin hypercube sampling and accepting only those values yielding solutions respecting a few conditions obtained from the qualitative patterns observed in yearly patterns of mosquito abundance and virus prevalence.
For some parameters the posterior distribution is rather narrow, implying that simple qualitative agreement with data can yield information on parameter difficult to estimate directly. For other parameters, the posterior distribution is instead similar to the prior. Simulations of multi-year dynamics after a first introduction of the virus always asymptotically result, if \(S_0>1\), in a pattern of yearly identical infections; however, their amplitude may be very different, even for the same value of \(S_0\), in correspondence to the uncertainties about several parameters.

MSC:

92D30 Epidemiology

References:

[1] A. Abdelrazec, S. Lenhart, H. Zhu. Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids. J. Math. Biol. 68 (2014), no. 6, 1553-82. · Zbl 1284.92049
[2] R. M. Anderson, R. M. May. Infectious diseases of humans. Oxford University Press, Oxford, 1991.
[3] T. G. Andreadis, J. F. Anderson, C. R. Vossbrinck, A. J. Main. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003. Vector-Borne & Zoonotic Diseases 4 (2004), no. 4, 360-378.
[4] C. S. Apperson, H. K. Hassan, B. A. Harrison, H. M. Savage, S. E. Aspen, A. Farajollahi, W. Crans, T. J. Daniels, R. C. Falco, M. Benedict, et al. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the Eastern United States. Vector-Borne & Zoonotic Diseases 4 (2004), no. 1, 71-82.
[5] N. Bacaër. Approximation of the basic reproduction number R_{0} for vector-borne diseases with a periodic vector population. Bull. Math. Biol. 69 (2007), no. 3, 1067-1091. · Zbl 1298.92093
[6] N. Bacaër, S. Guernaoui. The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53 (2006), no. 3, 421-436. · Zbl 1098.92056
[7] C. L. Bailey, M. E. Faran, T. Gargan2nd, D. E. Hayes. Winter survival of blood-fed and nonblood-fed Culex pipiens L. The Amer. J. Trop. Med. Hyg. 31 (1982), no. 5, 1054-1061.
[8] S. Baqar, C. G. Hayes, J. R. Murphy, D. M. Watts. Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes. Tech. report, DTIC Document, 1993.
[9] L. Barzon, M. Pacenti, E. Franchin, L. Squarzon, E. Lavezzo, M. Cattai, R. Cusinato, G. Palù. The complex epidemiological scenario of West Nile virus in Italy. Int. J. Environ. Res. Public Health 10 (2013), no. 10, 4669-4689.
[10] M. Beaumont. Approximate Bayesian computation in evolution and ecology. Ann. Rev. Ecol. Evol. Syst., 41 (2010), 379-406.
[11] D. Bisanzio, M. Giacobini, L. Bertolotti, A. Mosca, L. Balbo, U. Kitron, G. M. Vazquez-Prokopec. Spatio-temporal patterns of distribution of West Nile virus vectors in eastern Piedmont Region, Italy. Parasites & Vectors 4 (2011), 230.
[12] C. Bowman, A. B. Gumel, P. Van Den Driessche, J. Wu, H. Zhu. A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 67 (2005), no. 5, 1107-1133. · Zbl 1334.92392
[13] J. Castillo-Olivares, J. Wood. West Nile virus infection of horses. Veterinary research 35 (2004), no. 4, 467-483.
[14] Center for Disease Control and Prevention. West Nile Virus. Transmission. Available from (2015)
[15] Center for Disease Control and Prevention. West Nile Virus. Statistics and Maps. Available from (2016).
[16] J. Chen, J. Huang, J. C. Beier, R. S. Cantrell, C. Cosner, D. O. Fuller, G. Zhang, S. Ruan. Modeling and control of local outbreaks of West Nile virus in the United States. Discret. Contin. Dyn. Syst. - Ser. B 21 (2016), no. 8, 2423-2449. · Zbl 1351.37272
[17] D. Cianci, J. Van Den Broek, B. Caputo, F. Marini, A. D. Torre, H. Heesterbeek, N. Hartemink. Estimating Mosquito Population Size From Mark-Release-Recapture Data. J. Med. Entomol. 50 (2014), no. 3, 533.
[18] A. T. Ciota, A. C. Matacchiero, A. M. Kilpatrick, L. D. Kramer. The effect of temperature on life history traits of Culex mosquitoes. J. Med. Entomol. 51 (2014), no. 1, 55-62.
[19] G. Cruz-Pacheco, L. Esteva, J. A. Montaõ-Hirose, C. Vargas. Modelling the dynamics of West Nile virus. Bull. Math. Biol. 67 (2005), no. 6, 1157-1172. · Zbl 1334.92397
[20] G. Cruz-Pacheco, L. Esteva, C. Vargas. Seasonality and outbreaks in West Nile virus infection. Bull. Math. Biol. 71 (2009), no. 6, 1378-93. · Zbl 1171.92338
[21] G. Cruz-Pacheco, L. Esteva, C. Vargas. Multi-species interactions in West Nile virus infection. J. Biol. Dyn. 6 (2012), no. 2, 281-298. · Zbl 1447.92409
[22] J. R. Dawson, W. B. Stone, G. D. Ebel, D. S. Young, D. S. Galinski, J. P. Pensabene, M. A. Franke, M. Eidson, L. D. Kramer. Crow deaths caused by West Nile virus during winter. Emerg. Infect. Dis. 13 (2007), no. 12, 1912.
[23] B. L. Dodson, L. D. Kramer, J. L. Rasgon. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasites & Vectors 5 (2012), no. 1, 1-6.
[24] N. K. Duggal, W. K. Reisen, Y. Fang, R. M. Newman, X. Yang, G. D. Ebel, A. C. Brault. Genotype-specific variation in West Nile virus dispersal in California. Virology, 485 (2015), 79-85.
[25] European Centre for Disease Prevention and Control. Annual Epidemiological Report 2016 - West Nile fever. Available from: (2016).
[26] D. A. Ewing, C. A. Cobbold, B. V. Purse, M. A. Nunn, S. M. White. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. J. Theor. Biol., 400 (2016), 65-79. · Zbl 1343.92405
[27] C. Faraj, M. Elkohli, M. Lyagoubi. Cycle gonotrophique de Culex pipiens (Diptera : Culicidae), vecteur potentiel du virus West Nile, au Maroc : estimation de la durée en laboratoire. Bull Soc Pathol Exot, 99 (2006), 119-121.
[28] L. B. Goddard, A. E. Roth, W. K. Reisen, T. W. Scott. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J. Med. Entomol. 40 (2003), no. 6, 743-746.
[29] G. L. Hamer, E. D. Walker, J. D. Brawn, S. R. Loss, M. O. Ruiz, T. L. Goldberg, A. M. Schotthoefer, W. M. Brown, E. Wheeler, U. D. Kitron. Rapid amplification of West Nile virus: the role of hatch-year birds. Vector-Borne & Zoonotic Diseases 8 (2008), no. 1, 57-68.
[30] E. B. Hayes, N. Komar, R. S. Nasci, S. P. Montgomery, D. R. O’Leary, G. L. Campbell, et al. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 11 (2005), no. 8, 1167-1173.
[31] Z. Hubálek, J. Halouzka. West Nile fever-a reemerging mosquito-borne viral disease in Europe. Emerg. Infect. Dis. 5 (1999), no. 5, 643.
[32] J. Jiang, Z. Qiu, J. Wu, H. Zhu. Threshold conditions for West Nile virus outbreaks. Bull. Math. Biol. 71 (2009), no. 3, 627-47. · Zbl 1163.92036
[33] E. Jourdain, H. G. Zeller, P. Sabatier, S. Murri, Y. Kayser, T. Greenland, M. Lafaye, M. Gauthier-Clerc. Prevalence of West Nile virus neutralizing antibodies in wild birds from the Camargue area, Southern France. J. Wildl. Dis. 44 (2008), no. 3, 766-771.
[34] A. M. Kilpatrick, P. Daszak, M. J. Jones, P. P. Marra, L. D. Kramer. Host heterogeneity dominates West Nile virus transmission. Proc. R. Soc. B: Biol. Sciences 273 (2006), no. 1599, 2327-2333.
[35] A. M. Kilpatrick, L. D. Kramer, M. J. Jones, P. P. Marra, P. Daszak. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behaviour. Plos Biology 4 (2006).
[36] N. Komar. West Nile virus: epidemiology and ecology in North America. Adv. virus res., 61 (2003), 185-234.
[37] N. Komar, S. Langevin, S. Hinten, N. M. Nemeth, E. Edwards, D. L. Hettler, B. S. Davis, R. A. Bowen, M. L. Bunning. Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus. Emerg. Infect. Dis. J. 9 (2003), no. 3, 311.
[38] J. L. Kwan, S. Kluh, W. K. Reisen. Antecedent avian immunity limits tangential transmission of West Nile virus to humans. PLoS One 7 (2012), no. 3, e34127.
[39] V. Laperriere, K. Brugger, F. Rubel. Simulation of the seasonal cycles of bird, equine and human West Nile virus cases. Prev. Vet. Medi. 98 (2011), no. 2, 99-110.
[40] R. S. Levine, D. G. Mead, G. L. Hamer, B. J. Brosi, D. L. Hedeen, M. W. Hedeen, J. R. McMillan, D. Bisanzio, U. D. Kitron. Supersuppression: Reservoir competency and timing of mosquito host shifts combine to reduce spillover of West Nile virus. Amer. J. Trop. Med. Hyg. 95 (2016), no. 5, 1174-1184.
[41] M. Lewis, J. Rencawowicz, P. van den Driessche. Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 68 (2006), no. 1, 3-23. · Zbl 1334.92414
[42] R. Liu, J. Shuai, J. Wu, H. Zhu. Modeling spatial spread of West Nile virus and impact of directional dispersal of birds. Math. Biosci. Eng. 3 (2006), no. 1, 145-160. · Zbl 1089.92047
[43] V. Loetti, N. Schweigmann, N. Burroni. Development rates, larval survivorship and wing length of Culex pipiens (Diptera: Culicidae) at constant temperatures. J. Nat. Hist. 45 (2011), no. 35-36, 2203-2213.
[44] G. Macdonald. The epidemiology and control of malaria. Oxford Univ. Press, 1957.
[45] D. J. Madder, G. A. Surgeoner, B. V. Helson. Number of generations, egg production, and developmental time of Culex pipiens and Culex restauns (Diptera: Culicidae) in southern Ontario. J Med Entomol 20 (1983).
[46] N. a. Maidana, H. M. Yang. Spatial spreading of West Nile Virus described by traveling waves. J. Theor. Biol. 258 (2009), no. 3, 403-417. · Zbl 1405.92260
[47] T. Malik, P. Salceanu, A. Mubayi, A. Tridane, M. Imran. West Nile dynamics : virus transmission between domestic and wild bird populations through vectors. Can. Appl. Math. Quart. 20 (2012), no. 4, 535-556. · Zbl 1322.92074
[48] A. Mannelli, M. Martello, L. Tomassone, M. Calzolari, C. Casalone, et al. Inventory of available data and data sources and proposal for data collection on vector-borne zoonoses in animals. EFSA External Scientific Report en-234, 2012.
[49] G. Marini, P. Poletti, M. Giacobini, A. Pugliese, S. Merler, R. Rosà. The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy. PLoS One 11 (2016), no. 4, e0154018.
[50] G. Marini, R. Rosà, A. Pugliese, H. Heesterbeek. Exploring vector-borne infection ecology in multi-host communities: A case study of West Nile virus. J. Theor. Biol., 415 (2017), 58-69. · Zbl 1368.92186
[51] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254 (2008), no. 1, 178-196. · Zbl 1400.92013
[52] G. Molaei, T. G. Andreadis, P. M. Armstrong, J. F. Anderson, C. R. Vossbrinck. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg. Infect. Dis. 12 (2006), no. 3, 468.
[53] R. S. Nasci, H. M. Savage, D. J. White, J. R. Miller, B. C. Cropp, M. S. Godsey, A. J. Kerst, P. Bennett, K. Gottfried, R. S. Lanciotti. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg. Infect. Dis. 7 (2001), no. 4, 742.
[54] B. M. Nelms, E. Fechter-Leggett, B. D. Carroll, P. Macedo, S. Kluh, W. K. Reisen. Experimental and natural vertical transmission of West Nile virus by California Culex (Diptera: Culicidae) mosquitoes. J. Med. Entomol. 50 (2013), no. 2, 371-378.
[55] B. R. Noon, J. R. Sauer. Population models for passerine birds: structure, parameterization, and analysis. in D. McCullough, R. H. Barrett (eds.), Wildlife 2001: Populations, Springer, 1992, pp. 441-464.
[56] J. Owen, F. R. Moore, A. Williams, M. Ward, T. Beveroth, E. Miller, L. Wilson, V. Morley, R. Abbey-Lee, B. Veeneman, et al. Test of recrudescence hypothesis for overwintering of West Nile virus in gray catbirds. J. Med. Entomol. 47 (2010), no. 3, 451-457.
[57] E. Pérez-Ramírez, F. Llorente, M. Á. Jiménez-Clavero. Experimental Infections of Wild Birds with West Nile Virus. Viruses 6 (2014), no. 2, 752-781.
[58] E. A. E. Rayah, N. A. A. Groun. Effect of temperature on hatching eggs and embryonic survival in the mosquito Culex quinquefasciatus. Entomol. Exp. Appl. 33 (1983), no. 3, 349-351.
[59] W. K. Reisen. Ecology of West Nile virus in North America. Viruses 5 (2013), no. 9, 2079-2105.
[60] W. K. Reisen, Y. Fang, H. D. Lothrop, V. M. Martinez, J. Wilson, P. O’Connor, R. Carney, B. Cahoon-Young, M. Shafii, A. C. Brault. Overwintering of West Nile Virus in Southern California. J. Med. Entomol. 43 (2006), no. 2, 344-355.
[61] W. K. Reisen, Y. Fang, V. M. Martinez. Effects of Temperature on the Transmission of West Nile Virus by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 43 (2006), no. 2, 309-317.
[62] P. Reiter. Climate change and mosquito-borne disease. Environmental health perspectives 109 (2001), Suppl 1, 141.
[63] A. Rizzoli, L. Bolzoni, E. a. Chadwick, G. Capelli, F. Montarsi, M. Grisenti, J. M. de la Puente, J. Muñoz, J. Figuerola, R. Soriguer, G. Anfora, M. Di Luca, R. Rosà. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasites & Vectors 8 (2015), no. 1, 213.
[64] R. Rosà, G. Marini, L. Bolzoni, M. Neteler, M. Metz, L. Delucchi, E. A. Chadwick, L. Balbo, A. Mosca, M. Giacobini, et al. Early warning of West Nile virus mosquito vector: climate and land use models successfully explain phenology and abundance of Culex pipiens mosquitoes in north-western Italy. Parasites & Vectors 7 (2014), no. 1, 269.
[65] L. Shand, W. M. Brown, L. F. Chaves, T. L. Goldberg, G. L. Hamer, L. Haramis, U. Kitron, E. D. Walker, M. O. Ruiz. Predicting West Nile virus infection risk from the synergistic effects of rainfall and temperature. J. Med. Entomol. 53 (2016), no. (4), 935-944.
[66] J. E. Simpson, P. J. Hurtado, J. Medlock, G. Molaei, T. G. Andreadis, A. P. Galvani, M. A. Diuk-Wasser. Vector host-feeding preferences drive transmission of multi-host pathogens: West Nile virus as a model system. Proc. R. Soc. B: Biol. Sciences 279 (2012), no. 1730, 925-933.
[67] D. Thomas, B. Urena. A model describing the evolution of West Nile-like encephalitis in New York city. Math. Comp. Mod. 34 (2001), no. 7, 771-781. · Zbl 0999.92025
[68] M. J. Turell, D. J. Dohm, M. R. Sardelis, M. L. O’guinn, T. G. Andreadis, J. A. Blow. An update on the potential of north american mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 42 (2005), no. 1, 57-62.
[69] C. B. Vogels, J. J. Fros, G. P. Göertz, G. P. Pijlman, C. J. Koenraadt. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasites & Vectors 9 (2016), no. 1, 393.
[70] W. Wang, X.-Q. Zhao. Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Diff. Eqs 20 (2008), no. 3, 699-717. · Zbl 1157.34041
[71] S. S. Wheeler, S. A. Langevin, A. C. Brault, L. Woods, B. D. Carroll, W. K. Reisen. Detection of persistent West Nile virus RNA in experimentally and naturally infected avian hosts. Amer. J. Trop. Med. Hyg. 87 (2012), no. 3, 559-564.
[72] M. J. Wonham, T. de Camino-Beck, M. A. Lewis. An epidemiological model for West Nile virus: invasion analysis and control applications. Proc. R. Soc. B: Biol. Sciences 271 (2004), no. 1538, 501-507.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.