×

A numerical algorithm for modelling of boson-fermion stars in dilatonic gravity. (English) Zbl 1001.83055

For the summary: We investigate numerically a class of models of the static spherically symmetric boson-fermion stars in the scalar-tensor theory of gravity with massive dilaton field. The proper mathematical model of such stars is interpreted as a nonlinear two-parametric eigenvalue problem. The first of the parameters is the unknown internal boundary (the radius of the fermionic part of the star) \(R_s\), and the second one represents the frequency \(\Omega\) of the time oscillations of the bosonic field. To solve this problem, the whole space \([0,\infty)\) is split into two domains: internal \([0,R_s]\) (inside the star) and external \([R_s,\infty)\) (outside the star). In each domain the physical model leads to two nonlinear boundary value problems with respect to metric functions, the functions describing the fermionic and bosonic matter, and the dilaton field. These boundary value problems have different dimensions inside and outside the star, respectively. The solutions in these regions are obtained separately and matched using the necessary algebraic continuity conditions including \(R_s\) and \(\Omega\). The continuous analogue of the Newton method for solving both the nonlinear differential and algebraic problems is used.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
65C20 Probabilistic models, generic numerical methods in probability and statistics
83-08 Computational methods for problems pertaining to relativity and gravitational theory
65P20 Numerical chaos
65P30 Numerical bifurcation problems

Software:

COLSYS

References:

[1] Ascher, U.; Christiansen, J.; Russell, R. D., A collocation solver for mixed order systems of BVP, Math. Comp., 33, 659-679 (1979) · Zbl 0407.65035
[2] Ascher, U.; Christiansen, J.; Russell, R. D., Collocation software for boundary-value ODEs, ACM Trans. Math. Software, 7, 209-222 (1981) · Zbl 0455.65067
[3] J. Balakrishna, H. Shinkai, Dynamical evolution of boson stars in Brans-Dicke theory, Phys. Rev. D 58 (1998) 044016-1.; J. Balakrishna, H. Shinkai, Dynamical evolution of boson stars in Brans-Dicke theory, Phys. Rev. D 58 (1998) 044016-1.
[4] Boyadjiev, T. L.; Todorov, M. D.; Fiziev, P. P.; Yazadjiev, S. S., Mathematical modeling of boson-fermion stars in the generalized scalar-tensor theory of gravity, J. Comput. Phys., 166, 2, 253-270 (2001) · Zbl 0980.83041
[5] Brans, C.; Dicke, R., Mach’s principle and a relativistic theory of gravitation, Phys. Rev., 124, 925-935 (1961) · Zbl 0103.21402
[6] Callan, C.; Friedan, D.; Martinec, E.; Perry, M., Strings in background fields, Nucl. Phys., B 262, 593 (1985)
[7] Colpi, M.; Shapiro, S.; Wasserman, I., Boson stars: gravitational equilibria of self-interacting scalar fields, Phys. Rev. Lett., 57, 2485 (1986)
[8] Comer, G.; Shinkai, H., Generation of scalar-tensor gravity effects in equilibrium state boson stars, Class. Quant. Grav., 15, 669 (1998) · Zbl 0930.37046
[9] Damour, T.; Esposito-Farese, G., Tensor-multi-scalar theories of gravitation, Class. Quantum Grav., 9, 2093 (1992) · Zbl 0780.53054
[10] Dicke, R., Mach’s principle and invariance under transformation of units, Phys. Rev., 125, 2163 (1962) · Zbl 0113.45101
[11] V.V. Ermakov, N.N. Kalitkin, The optimal step and regularisation for Newton’s method, JVMiMF 21(6) (1981) 491 (in Russian), English translation: USSR Comp. Phys. and Math. Phys. 21(2) (1981) 235.; V.V. Ermakov, N.N. Kalitkin, The optimal step and regularisation for Newton’s method, JVMiMF 21(6) (1981) 491 (in Russian), English translation: USSR Comp. Phys. and Math. Phys. 21(2) (1981) 235. · Zbl 0484.65027
[12] Filippov, A. T.; Puzynin, I. V.; Mavlo, D. P., Numerical methods for solving some singular boundary value problems of quantum mechanics and quantum field theory, J. Comp. Phys., 22, 2, 150 (1976)
[13] P.P. Fiziev, S.S. Yazadjiev, T.L. Boyadjiev, M.D. Todorov, Boson stars in massive dilatonic gravity, Phys. Rev. D 61 (2000) 124018-1.; P.P. Fiziev, S.S. Yazadjiev, T.L. Boyadjiev, M.D. Todorov, Boson stars in massive dilatonic gravity, Phys. Rev. D 61 (2000) 124018-1. · Zbl 1026.83005
[14] Fradkin, E.; Tseytlin, A., Effective field theory from quantized strings, Phys. Lett., B 158, 316 (1985) · Zbl 0967.81516
[15] M.K. Gavurin, Nonlinear functional equations and continuous analogues of iterative methods. Izvestia VUZ, Matematika 14(6) (1958) 18-31 (in Russian) (see also Math. Rev. 25(2) (1963) #1380).; M.K. Gavurin, Nonlinear functional equations and continuous analogues of iterative methods. Izvestia VUZ, Matematika 14(6) (1958) 18-31 (in Russian) (see also Math. Rev. 25(2) (1963) #1380).
[16] Gleiser, M.; Watkins, R., Gravitational stability of stelar matter, Nucl. Phys., B 319, 733 (1989)
[17] Green, M. B.; Schwarz, J. H.; Witten, E., Superstring Theory (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0619.53002
[18] Gunderson, M.; Jensen, L., Boson stars in the Brans-Dicke gravitational theories, Phys. Rev., D 48, 5628 (1993)
[19] Henriques, A.; Liddle, A.; Moorhouse, R., Combined boson-fermion stars: configurations and stability, Nucl. Phys., B 337, 737 (1990)
[20] E.P. Jidkov, G.I. Makarenko, I.V. Puzynin, Continuous analog of Newton’s method in nonlinear problems of Physics, in: A.M. Baldin (Ed.), Physics of Elementary Particles and Atomic Nuclei, Vol. 4, part I, JINR, Dubna, 1973, pp. 127-166 (in Russian), English translation: American Institute of Physics, p. 53.; E.P. Jidkov, G.I. Makarenko, I.V. Puzynin, Continuous analog of Newton’s method in nonlinear problems of Physics, in: A.M. Baldin (Ed.), Physics of Elementary Particles and Atomic Nuclei, Vol. 4, part I, JINR, Dubna, 1973, pp. 127-166 (in Russian), English translation: American Institute of Physics, p. 53.
[21] Kaup Klein-Gordon Geon, D., Phys. Rev., 172, 1331 (1968)
[22] Maharana, J.; Schwarz, H., Noncompact symmetries in string theory, Nucl. Phys., B 390, 3 (1992)
[23] Meissner, K.; Veneziano, G., Symmetries of cosmological superstring vacua, Phys. Lett., B 267, 33 (1991)
[24] Meissner, K.; Veneziano, G., Mod. Phys. Lett., A 6, 3398 (1992)
[25] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0778.65002
[26] I.V. Puzynin, I.V. Amirkhanov, E.V. Zemlyanaya, V.N. Pervushin, T.P. Puzynina, T.A. Strizh, V.D. Lakhno, The generalised continuous analog of Newton’s method for numerical study of some nonlinear quantum-field models, in: A.M. Baldin (Ed.), Physics of Elementary Particles and Atomic Nuclei, Vol. 30, No 1, JINR, Dubna, 1999, pp. 210-265 (in Russian), English translation: American Institute of Physics, p. 97.; I.V. Puzynin, I.V. Amirkhanov, E.V. Zemlyanaya, V.N. Pervushin, T.P. Puzynina, T.A. Strizh, V.D. Lakhno, The generalised continuous analog of Newton’s method for numerical study of some nonlinear quantum-field models, in: A.M. Baldin (Ed.), Physics of Elementary Particles and Atomic Nuclei, Vol. 30, No 1, JINR, Dubna, 1999, pp. 210-265 (in Russian), English translation: American Institute of Physics, p. 97.
[27] Ruffini, R.; Bonazzola, S., System of self-interacting particles in general relativity and the concept of an equation of state, Phys. Rev., 187, 1767 (1969)
[28] Sherk, J.; Schwarz, J., Dual models and the geometry of space-time, Phys. Lett., B 52, 347 (1975)
[29] Tao, Z.; Xue, X., Boson star in a gravitational theory with dilaton, Phys. Rev., D 45, 1878 (1992)
[30] Torres, D., Boson stars in general scalar-tensor gravitation: equilibrium configurations, Phys. Rev., D 56, 3478 (1997)
[31] Torres, D.; Shunk, F.; Liddle, A., Brans-Dicke boson stars: configurations and stability through cosmic history, Class. Quant. Grav., 15, 3701 (1998) · Zbl 0933.83050
[32] P.N. Vabishchevich, Numerical Methods for Solving Free-Boundary Problems, Publishing House of the Moscow State University, Moscow, 1987 (in Russian).; P.N. Vabishchevich, Numerical Methods for Solving Free-Boundary Problems, Publishing House of the Moscow State University, Moscow, 1987 (in Russian). · Zbl 0629.65129
[33] Will, C. M., Theory and Experiment in Gravitational Physics (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0785.53068
[34] Yazadjiev, S., Tensor mass and particle number peak at the same location in the scalar-tensor gravity boson star models — an analytical proof, Class. Quant. Grav., 16, L63 (1999) · Zbl 0939.83064
[35] Yu.S. Zavyalov, B.I. Kvasov, V.L. Miroshnichenko, Methods of Spline-functions, Nauka, Moscow, 1980 (in Russian).; Yu.S. Zavyalov, B.I. Kvasov, V.L. Miroshnichenko, Methods of Spline-functions, Nauka, Moscow, 1980 (in Russian). · Zbl 0524.65007
[36] Numerical receipes books on-line, http://www.ulib.org/webRoot/Books/Numerical_Recipes/.; Numerical receipes books on-line, http://www.ulib.org/webRoot/Books/Numerical_Recipes/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.