×

Traversable thin-shell wormhole in the 4D Einstein-Gauss-Bonnet theory. (English) Zbl 1540.83118

Summary: This work investigates the spherically symmetric thin-shell wormhole solutions in four-dimensional Einstein-Gauss-Bonnet theory and explores their stabilities under radial, linear perturbations. These solutions are typically traversable and characterized by a thin-shell throat in accordance with Israel’s junction conditions. In asymptotically flat and AdS spacetimes with a negative Gauss-Bonnet coupling constant, stable neutral wormholes are encountered when the magnitude of the coupling constant becomes significant. The throats of such wormholes are sustained by ordinary matter and possess finite radii. In asymptotically dS spacetimes, no stable neutral wormhole featuring ordinary matter is observed. On the other hand, for positive Gauss-Bonnet coupling constant, stable thin-shell wormhole solutions can be established when the throats are exclusively supported by exotic matter. Moreover, stable charged wormholes comprised of ordinary matter are found universally in the asymptotically flat, AdS, and dS spacetimes. Unlike their neutral counterparts, the throat radii of such charged wormholes can be arbitrarily small. However, as the charge becomes more significant, such solutions only remain stable when supported by exotic matter.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes

References:

[1] Morris, M. S.; Thorne, K. S., Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity, Am. J. Phys., 56, 395-412, 1988 · Zbl 0957.83529
[2] Hochberg, D.; Visser, M., Null energy condition in dynamic wormholes, Phys. Rev. Lett., 81, 746, 1998 · Zbl 0949.83052
[3] Visser, M., Traversable wormholes: Some simple examples, Phys. Rev. D, 39, 3182, 1989
[4] Poisson, E.; Visser, M., Thin-shell wormholes: Linearization stability, Phys. Rev. D, 52, 7318, 1995; Eiroa, E. F., Stability of thin-shell wormholes with spherical symmetry, Phys. Rev. D, 78, Article 024018 pp., 2008; Halilsoy, M.; Ovgun, A.; Mazharimousavi, S., Eur. Phys. J. C, 74, 2796, 2014; Ovgun, A., Eur. Phys. J. Plus, 131, 11, 389, 2016; Ovgun, A.; Jusufi, K., Eur. Phys. J. Plus, 132, 12, 543, 2017
[5] Eiroa, E. F.; Simeone, C., Thin-shell wormholes in dilaton gravity, Phys. Rev. D, 71, Article 127501 pp., 2005; Yue, X.; Gao, S., Stability of Brans-Dicke thin shell wormholes, Phys. Lett. A, 375, 2193, 2011; Richarte, M. G., Cylindrical wormholes in DGP gravity, Phys. Rev. D, 87, Article 067503 pp., 2013; Kanti, P.; Kleihaus, B.; Kunz, J., Wormholes in dilatonic Einstein-Gauss-Bonnet theory, Phys. Rev. Lett., 107, Article 271101 pp., 2011; Antoniou, G.; Bakopoulos, A.; Kanti, P.; Kleihaus, B.; Kunz, J., Novel Einstein-Scalar-Gauss-Bonnet wormholes without exotic matter, Phys. Rev. D, 101, Article 024033 pp., 2020
[6] Gravanis, E.; Willison, S., “Mass without mass” from thin shells in Gauss-Bonnet gravity, Phys. Rev. D, 75, Article 084025 pp., 2007; Dotti, G.; Oliva, J.; Troncoso, R., Static wormhole solution for higher-dimensional gravity in vacuum, Phys. Rev. D, 75, Article 024002 pp., 2007
[7] Thibeault, M.; Simeone, C.; Eiroa, E. F., Thin-shell wormholes in Einstein-Maxwell theory with a Gauss-Bonnet term, Gen. Relativ. Gravit., 38, 1593, 2006; Richarte, M.; Simeone, C., Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity, Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 77, Article 089903 pp., 2008 · Zbl 1117.83029
[8] Mazharimousavi, S. H.; Halilsoy, M.; Amirabi, Z., Stability of thin-shell wormholes supported by ordinary matter in Einstein-Maxwell-Gauss-Bonnet gravity, Phys. Rev. D, 81, Article 104002 pp., 2010; Mazharimousavi, S. H.; Halilsoy, M.; Amirabi, Z., Higher dimensional thin-shell wormholes in Einstein-Yang-Mills-Gauss-Bonnet gravity, Class. Quant. Grav., 28, Article 025004 pp., 2011; Dehghani, M. H.; Mehdizadeh, M. R., Lovelock thin-shell wormholes, Phys. Rev. D, 85, Article 024024 pp., 2012; Kokubu, T.; Harada, T., Thin-shell wormholes in Einstein and Einstein-Gauss-Bonnet theories of gravity, Universe, 6, 11, 197, 2020 · Zbl 1241.83046
[9] Mehdizadeh, M. R.; Kord Zangeneh, M.; Lobo, F. S.N., Higher-dimensional thin-shell wormholes in third-order Lovelock gravity, Phys. Rev. D, 92, Article 044022 pp., 2015
[10] Glavan, D.; Lin, C., Einstein-Gauss-Bonnet gravity in 4-dimensional spacetime, Phys. Rev. Lett., 124, 8, Article 081301 pp., 2020
[11] Fernandes, P. G.S., Charged black holes in AdS spaces in 4D Einstein Gauss-Bonnet gravity, Phys. Lett. B, 805, Article 135468 pp., 2020 · Zbl 1436.83060
[12] Casalino, A.; Colleaux, A.; Rinaldi, M.; Vicentini, S., Regularized lovelock gravity, Phys. Dark Universe, 31, Article 100770 pp., 2021; Konoplya, R. A.; Zhidenko, A., Black holes in the four-dimensional Einstein-Lovelock gravity, Phys. Rev. D, 101, 8, 2020, 084038. https://doi.org/10.1103/PhysRevD.101.084038; R.A. Konoplya, A. Zhidenko, BTZ black holes with higher curvature corrections in the 3D Einstein-Lovelock theory, Phys. Rev. D 102, 064004, http://dx.doi.org/10.1103/PhysRevD.102.064004.; Wei, S.-W.; Liu, Y.-X., Testing the nature of Gauss-Bonnet gravity by four-dimensional rotating black hole shadow, Eur. Phys. J. Plus, 136, 4, 2021, 436, https://doi.org/10.1140/epjp/s13360-021-01398-9; Ghosh, S. G.; Maharaj, S. D., Radiating black holes in the novel 4D Einstein-Gauss-Bonnet gravity, Phys. Dark Univ., 30, Article 100687 pp., 2020; Ghosh, S. G.; Kumar, R., Generating black holes in the novel \(4 D\) Einstein-Gauss-Bonnet gravity, Class. Quant. Grav., 37, 24, 2020, 245008, https://doi.org/10.1088/1361-6382/abc134; Kumar, A.; Kumar, R., Bardeen black holes in the novel \(4 D\) Einstein-Gauss-Bonnet gravity, 8, 4, 2022, 232, https://doi.org/10.3390/universe8040232; Yang, K.; Gu, B. M.; Wei, S. W.; Liu, Y. X., Born-Infeld Black Holes in novel 4D Einstein-Gauss-Bonnet gravity, Eur. Phys. J. C, 80, 662, 2020
[13] Konoplya, R. A.; Zinhailo, A. F., Quasinormal modes, stability and shadows of a black hole in the novel 4D Einstein-Gauss-Bonnet gravity, Eur. Phys. J. C, 80, Article 1049 pp., 2020; Konoplya, R. A.; Zhidenko, A., (In)stability of black holes in the 4D Einstein-Gauss-Bonnet and Einstein-Lovelock gravities, Phys. Dark Universe, 30, Article 100697 pp., 2020; Zhang, C. Y.; Li, P. C.; Guo, M., Greybody factor and power spectra of the Hawking radiation in the novel \(4 D\) Einstein-Gauss-Bonnet de-Sitter gravity, Eur. Phys. J. C, 80, 9, 2020; Konoplya, R. A.; Zinhailo, A. F., Grey-body factors and Hawking radiation of black holes in 4D Einstein-Gauss-Bonnet gravity, Phys. Lett. B, 810, Article 135793 pp., 2020; Churilova, M. S., Quasinormal modes of the Dirac field in the novel 4D Einstein-Gauss-Bonnet gravity, Phys. Dark Univ., 31, Article 100748 pp., 2021; Mishra, A. K., Quasinormal modes and Strong Cosmic Censorship in the novel 4D Einstein-Gauss-Bonnet gravity, Gen. Relat. Grav., 52, 106, 2020; S.L. Li, P. Wu, H. Yu, Stability of the Einstein Static Universe in 4D Gauss-Bonnet Gravity, arXiv:2004.02080 [gr-qc].; Aragón, A.; Bécar, R.; González, P. A.; Vásquez, Y., Perturbative and nonperturbative quasinormal modes of 4D Einstein-Gauss-Bonnet black holes, Eur. Phys. J. C, 80, 8, 2020, 773, https://doi.org/10.1140/epjc/s10052-020-8298-7; Yang, S.-J.; Wan, J.-J.; Chen, J.; Yang, J.; Wang, Y.-Q., Weak cosmic censorship conjecture for the novel 4D charged Einstein-Gauss-Bonnet black hole with test scalar field and particle, Eur. Phys. J. C, 80, 10, 2020, 937, https://doi.org/10.1140/epjc/s10052-020-08511-9; Cuyubamba, M. A., Stability of asymptotically de Sitter and anti-de Sitter black holes in 4D regularized Einstein-Gauss-Bonnet theory, Phys. Dark Univ., 31, Article 100789 pp., 2021; Liu, P.; Niu, C.; Zhang, C. Y., Instability of the novel 4D charged Einstein-Gauss-Bonnet de-Sitter black hole, Chin. Phys. C, 45, 2, 2021, 025104, https://doi.org/10.1088/1674-1137/abcd2d; Devi, S.; Roy, R.; Chakrabarti, S., Quasinormal modes and greybody factors of the novel four-dimensional Gauss-Bonnet black holes in asymptotically de Sitter space time: Scalar, Electromagnetic and Dirac perturbations, Eur. Phys. J. C, 80, 8, 2020, 760, https://doi.org/10.1140/epjc/s10052-020-8311-1
[14] Guo, M.; Li, P. C., The innermost stable circular orbit and shadow in the novel \(4 D\) Einstein-Gauss-Bonnet gravity, Eur. Phys. J. C, 80, 6, 2020, 588. https://doi.org/10.1140/epjc/s10052-020-8164-7; Jin, X.h.; Gao, Y.-x.; Liu, D.j., Strong gravitational lensing of a 4D Einstein-Gauss-Bonnet black hole in homogeneous plasma, Int. J. Mod. Phys. D, 29, 09, 2020, 2050065, https://doi.org/10.1142/S0218271820500650; Zhang, Y. P.; Wei, S. W.; Liu, Y. X., Spinning test particle in four-dimensional Einstein-Gauss-Bonnet black hole, Universe, 6, 8, 2020, 103, https://doi.org/10.3390/universe6080103; Roy, R.; Chakrabarti, S., A study on black hole shadows in asymptotically de Sitter spacetimes, Phys. Rev. D, 102, Article 024059 pp., 2020; Islam, S. U.; Kumar, R.; Ghosh, S. G., Gravitational lensing by black holes in \(4 D\) Einstein-Gauss-Bonnet gravity, JCAP, 09, 030, 2020; Zeng, X. X.; Zhang, H. Q.; Zhang, H., Shadows and photon spheres with spherical accretions in the four-dimensional Gauss-Bonnet black hole, Eur. Phys. J. C, 80, 2020, 872, https://doi.org/10.1140/epjc/s10052-020-08449-y; Heydari-Fard, M.; Heydari-Fard, M.; Sepangi, H. R., Bending of light in novel 4D Gauss-Bonnet-de Sitter black holes by Rindler-Ishak method, EPL, 133, Article 50006 pp., 2021
[15] K. Hegde, A.N. Kumara, C.L.A. Rizwan, K.M. A, M.S. Ali, Thermodynamics, Phase Transition, and Joule Thomson Expansion of novel 4-D Gauss Bonnet AdS Black Hole, arXiv:2003.08778 [gr-qc].; Singh, D. V.; Siwach, S., Thermodynamics and P-v criticality of Bardeen-AdS black hole in 4-D Einstein-Gauss-Bonnet gravity, Phys. Lett. B, 808, Article 135658 pp., 2020; Hosseini Mansoori, S. A., Thermodynamic geometry of novel 4-D Gauss Bonnet AdS Black Hole, Phys. Dark Univ., 31, Article 100776 pp., 2021; Ying, S., Thermodynamics and Weak Cosmic Censorship Conjecture of 4D Gauss-Bonnet-Maxwell Black Holes via Charged Particle Absorption, Chin. Phys. C, 44, 12, 2020, 125101, https://doi.org/10.1088/1674-1137/abb4c9
[16] Malafarina, D.; Toshmatov, B.; Dadhich, N., Dust collapse in 4D Einstein-Gauss-Bonnet gravity, Phys. Dark Univ., 30, Article 100598 pp., 2020; Liu, C.; Zhu, T.; Wu, Q., Thin Accretion Disk around a four-dimensional Einstein-Gauss-Bonnet Black Hole, Chin. Phys. C, 45, 1, 2021, 015105, https://doi.org/10.1088/1674-1137/abc16c; Shu, F.-W., Vacua in novel 4D Eisntein-Gauss-Bonnet Gravity: pathology and instability, Phys. Lett. B, 811, Article 135907 pp., 2020; Bonifacio, J.; Hinterbichler, K.; Johnson, L. A., Amplitudes and 4D Gauss-Bonnet Theory, Phys. Rev. D, 102, 2, 2020, 024029, https://doi.org/10.1103/PhysRevD.102.024029; Ge, X. H.; Sin, S. J., Causality of black holes in 4-dimensional Einstein-Gauss-Bonnet-Maxwell theory, Eur. Phys. J. C, 80, 8, 2020, 695, https://doi.org/10.1140/epjc/s10052-020-8288-9; Eslam Panah, B.; Jafarzade, Kh., 4D Einstein-Gauss-Bonnet AdS Black Holes as Heat Engine, Nucl. Phys. B, 961, Article 115269 pp., 2020
[17] Lu, H.; Pang, Y., Horndeski gravity as \(D \to 4\) limit of Gauss-bonnet, Phys. Lett. B, 809, Article 135717 pp., 2020; Kobayashi, T., Effective scalar-tensor description of regularized Lovelock gravity in four dimensions, JCAP, 07, 013, 2020; Hennigar, Robie A.; Kubiznak, David; Mann, Robert B.; Pollack, Christopher, On taking the \(D \to 4\) limit of Gauss-Bonnet gravity: Theory and solutions, JHEP, 07, 027, 2020; Fernandes, P. G.S.; Carrilho, P.; Clifton, T.; Mulryne, D. J., Derivation of regularized field equations for the Einstein-Gauss-Bonnet theory in four dimensions, Phys. Rev. D, 102, 2, 2020, 024025, https://doi.org/10.1103/PhysRevD.102.024025; Fernandes, P. G.S.; Carrilho, P.; Clifton, T.; Mulryne, D. J., Black holes in the scalar-tensor formulation of 4D Einstein-Gauss-Bonnet gravity: Uniqueness of solutions, and a new candidate for dark matter, Phys. Rev. D, 104, 4, Article 044029 pp., 2021; Fernandes, P. G.S., Gravity with a generalized conformal scalar field: theory and solutions, Phys. Rev. D, 103, 10, Article 104065 pp., 2021
[18] Ai, W. Y., A note on the novel 4D Einstein-Gauss-Bonnet gravity, Commun. Theor. Phys., 72, 9, 2020, 095402, https://doi.org/10.1088/1572-9494/aba242; Mahapatra, S., A note on the total action of 4D Gauss-Bonnet theory, EPJC, 80, 992, 2020; Lu, H.; Mao, P., Asymptotic structure of Einstein-Gauss-Bonnet theory in lower dimensions, Chin. Phys. C, 45, Article 013110 pp., 2021; Aoki, K.; Gorji, M. A.; Mukohyama, S., A consistent theory of \(D \to 4\) EinsteinGaussBonnet gravity, Chin. Phys. C, 45, Article 013110 pp., 2021; Aoki, K.; Gorji, M. A.; Mukohyama, S., Cosmology and gravitational waves inconsistent \(D \to 4\) Einstein-Gauss-Bonnet gravity, JCAP, 09, 014, 2020, JCAP 05 (2021) E01 (erratum), https://doi.org/10.1088/1475-7516/2020/09/014
[19] Jusufi, K.; Banerjee, A.; Ghosh, S. G., Wormholes in 4D Einstein-Gauss-Bonnet gravity, Eur. Phys. J. C, 80, 8, 2020, 698. https://doi.org/10.1140/epjc/s10052-020-8287-x
[20] Godani, N.; Singh, D. V.; Samanta, G. C., Stability of thin-shell wormhole in 4D Einstein-Gauss-Bonnet gravity, Phys. Dark Univ., 35, Article 100952 pp., 2022
[21] Cai, R. G.; Cao, L. M.; Ohta, N., Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy, J. High Energy Phys., 1004, 082, 2010; Y. Tomozawa, Quantum corrections to gravity, arXiv:1107.1424 [gr-qc]. · Zbl 1272.83042
[22] Davis, S. C., Generalised Israel junction conditions for a Gauss-Bonnet brane world, Phys. Rev. D, 67, Article 024030 pp., 2003
[23] Huang, Y. M.; Tian, Y.; Wu, X. N., Collapsing dust thin shells in Einstein-Gauss-Bonnet gravity, Eur. Phys. J. C, 82, 2, 183, 2022
[24] Nandi, K. K.; Zhang, Y.-Z.; Migranov, N. G., A semiclassical ANEC constraint on classical traversable Lorentzian wormholes, J. Nonlinear Phenom. Complex Syst., 9, 61-67, 2006, arXiv:gr-qc/0409053
[25] Visser, M.; Kar, S.; Dadhich, N., Traversable wormholes with arbitrarily small energy condition violations, Phys. Rev. Lett., 90, Article 201102 pp., 2003; Nandi, K. K.; Zhang, Y.-Z.; Vijaya Kumar, K. B., Volume integral theorem for exotic matter, Phys. Rev. D, 70, Article 127503 pp., 2004 · Zbl 1267.83134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.