×

Emergent universe and genesis from the DHOST cosmology. (English) Zbl 1459.85003

Summary: In this article, we present an emergent universe scenario that can be derived from DHOST cosmology. The universe starts asymptotically Minkowski in the far past just like the regular Galileon Genesis, but evolves to a radiation dominated period at the late stage, and therefore, the universe has a graceful exit which is absent in the regular Galileon Genesis. We analyze the behavior of cosmological perturbations and show that both the scalar and tensor modes are free from the gradient instability problem. We further analyze the primordial scalar spectrum generated in various situations and discuss whether a scale invariance can be achieved.

MSC:

85A40 Astrophysical cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C25 Approximation procedures, weak fields in general relativity and gravitational theory

References:

[1] Brandenberger, RH, Alternatives to the inflationary paradigm of structure formation, Int. J. Mod. Phys. Conf. Ser., 01, 67 (2011)
[2] R.H. Brandenberger, Introduction to Early Universe Cosmology, PaSICFI2010 (2010) 001 [arXiv:1103.2271] [INSPIRE].
[3] A. Borde and A. Vilenkin, Eternal inflation and the initial singularity, Phys. Rev. Lett.72 (1994) 3305 [gr-qc/9312022] [INSPIRE].
[4] A. Borde, A.H. Guth and A. Vilenkin, Inflationary space-times are incompletein past directions, Phys. Rev. Lett.90 (2003) 151301 [gr-qc/0110012] [INSPIRE].
[5] Mukhanov, VF; Brandenberger, RH, A nonsingular universe, Phys. Rev. Lett., 68, 1969 (1992) · Zbl 0969.83520
[6] R.H. Brandenberger, V.F. Mukhanov and A. Sornborger, A cosmological theory without singularities, Phys. Rev. D48 (1993) 1629 [gr-qc/9303001] [INSPIRE].
[7] Cai, Y-F; Qiu, T-t; Brandenberger, R.; Zhang, X-m, A Nonsingular Cosmology with a Scale-Invariant Spectrum of Cosmological Perturbations from Lee-Wick Theory, Phys. Rev. D, 80 (2009)
[8] Cai, Y-F; Easson, DA; Brandenberger, R., Towards a Nonsingular Bouncing Cosmology, JCAP, 08, 020 (2012)
[9] Yoshida, D.; Quintin, J.; Yamaguchi, M.; Brandenberger, RH, Cosmological perturbations and stability of nonsingular cosmologies with limiting curvature, Phys. Rev. D, 96 (2017)
[10] Novello, M.; Bergliaffa, SEP, Bouncing Cosmologies, Phys. Rept., 463, 127 (2008)
[11] Lehners, J-L, Ekpyrotic and Cyclic Cosmology, Phys. Rept., 465, 223 (2008)
[12] Cai, Y-F, Exploring Bouncing Cosmologies with Cosmological Surveys, Sci. China Phys. Mech. Astron., 57, 1414 (2014)
[13] Battefeld, D.; Peter, P., A Critical Review of Classical Bouncing Cosmologies, Phys. Rept., 571, 1 (2015) · Zbl 1370.83107
[14] Brandenberger, R.; Peter, P., Bouncing Cosmologies: Progress and Problems, Found. Phys., 47, 797 (2017) · Zbl 1372.83002
[15] Cai, Y-F; Marciano, A.; Wang, D-G; Wilson-Ewing, E., Bouncing cosmologies with dark matter and dark energy, Universe, 3, 1 (2016)
[16] G.F.R. Ellis and R. Maartens, The emergent universe: Inflationary cosmology with no singularity, Class. Quant. Grav.21 (2004) 223 [gr-qc/0211082] [INSPIRE]. · Zbl 1061.83071
[17] G.F.R. Ellis, J. Murugan and C.G. Tsagas, The Emergent universe: An Explicit construction, Class. Quant. Grav.21 (2004) 233 [gr-qc/0307112] [INSPIRE]. · Zbl 1061.83072
[18] Brandenberger, RH; Vafa, C., Superstrings in the Early Universe, Nucl. Phys. B, 316, 391 (1989)
[19] Nayeri, A.; Brandenberger, RH; Vafa, C., Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology, Phys. Rev. Lett., 97 (2006)
[20] Brandenberger, RH; Nayeri, A.; Patil, SP; Vafa, C., Tensor Modes from a Primordial Hagedorn Phase of String Cosmology, Phys. Rev. Lett., 98, 231302 (2007)
[21] Brandenberger, RH; Nayeri, A.; Patil, SP; Vafa, C., String gas cosmology and structure formation, Int. J. Mod. Phys. A, 22, 3621 (2007) · Zbl 1141.83310
[22] Piao, Y-S; Zhou, E., Nearly scale invariant spectrum of adiabatic fluctuations may be from a very slowly expanding phase of the universe, Phys. Rev. D, 68 (2003)
[23] He, M., Differentiating G-inflation from String Gas Cosmology using the Effective Field Theory Approach, JCAP, 12, 040 (2016)
[24] Battefeld, T.; Watson, S., String gas cosmology, Rev. Mod. Phys., 78, 435 (2006) · Zbl 1205.83068
[25] Brandenberger, RH, String Gas Cosmology: Progress and Problems, Class. Quant. Grav., 28, 204005 (2011) · Zbl 1228.83120
[26] Brandenberger, RH, String Gas Cosmology after Planck, Class. Quant. Grav., 32, 234002 (2015) · Zbl 1329.83207
[27] Nicolis, A.; Rattazzi, R.; Trincherini, E., The Galileon as a local modification of gravity, Phys. Rev. D, 79 (2009)
[28] Qiu, T.; Evslin, J.; Cai, Y-F; Li, M.; Zhang, X., Bouncing Galileon Cosmologies, JCAP, 10, 036 (2011)
[29] Easson, DA; Sawicki, I.; Vikman, A., G-Bounce, JCAP, 11, 021 (2011)
[30] Creminelli, P.; Nicolis, A.; Trincherini, E., Galilean Genesis: An Alternative to inflation, JCAP, 11, 021 (2010)
[31] Libanov, M.; Mironov, S.; Rubakov, V., Generalized Galileons: instabilities of bouncing and Genesis cosmologies and modified Genesis, JCAP, 08, 037 (2016)
[32] Perreault Levasseur, L.; Brandenberger, R.; Davis, A-C, Defrosting in an Emergent Galileon Cosmology, Phys. Rev. D, 84, 103512 (2011)
[33] Creminelli, P.; Hinterbichler, K.; Khoury, J.; Nicolis, A.; Trincherini, E., Subluminal Galilean Genesis, JHEP, 02, 006 (2013) · Zbl 1342.83236
[34] Hinterbichler, K.; Joyce, A.; Khoury, J.; Miller, GEJ, Dirac-Born-Infeld Genesis: An Improved Violation of the Null Energy Condition, Phys. Rev. Lett., 110, 241303 (2013)
[35] Nishi, S.; Kobayashi, T.; Tanahashi, N.; Yamaguchi, M., Cosmological matching conditionsand galilean genesis in Horndeski’s theory, JCAP, 03, 008 (2014)
[36] Nishi, S.; Kobayashi, T., Generalized Galilean Genesis, JCAP, 03, 057 (2015)
[37] Mironov, S.; Rubakov, V.; Volkova, V., Genesis with general relativity asymptotics in beyond Horndeski theory, Phys. Rev. D, 100 (2019)
[38] Easson, DA; Sawicki, I.; Vikman, A., When Matter Matters, JCAP, 07, 014 (2013)
[39] Kobayashi, T.; Yamaguchi, M.; Yokoyama, J., Galilean Creation of the Inflationary Universe, JCAP, 07, 017 (2015)
[40] Langlois, D.; Noui, K., Hamiltonian analysis of higher derivative scalar-tensor theories, JCAP, 07, 016 (2016)
[41] Ben Achour, J.; Crisostomi, M.; Koyama, K.; Langlois, D.; Noui, K.; Tasinato, G., Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order, JHEP, 12, 100 (2016) · Zbl 1390.83249
[42] Langlois, D.; Mancarella, M.; Noui, K.; Vernizzi, F., Effective Description of Higher-Order Scalar-Tensor Theories, JCAP, 05, 033 (2017) · Zbl 1515.83229
[43] N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP05 (2004) 074 [hep-th/0312099] [INSPIRE].
[44] Cai, Y.; Wan, Y.; Li, H-G; Qiu, T.; Piao, Y-S, The Effective Field Theory of nonsingular cosmology, JHEP, 01, 090 (2017) · Zbl 1373.83124
[45] Ilyas, A.; Zhu, M.; Zheng, Y.; Cai, Y-F; Saridakis, EN, DHOST Bounce, JCAP, 09, 002 (2020) · Zbl 1493.83032
[46] Bardeen, JM; Steinhardt, PJ; Turner, MS, Spontaneous Creation of Almost Scale-Free Density Perturbations in an Inflationary Universe, Phys. Rev. D, 28, 679 (1983)
[47] Brandenberger, RH; Kahn, R., Cosmological perturbations in inflationary universe models, Phys. Rev. D, 29, 2172 (1984)
[48] Cai, Y-F; Xue, W.; Brandenberger, R.; Zhang, X-m, Thermal Fluctuations and Bouncing Cosmologies, JCAP, 06, 037 (2009)
[49] Sasaki, M., Gauge Invariant Scalar Perturbations in the New Inflationary Universe, Prog. Theor. Phys., 70, 394 (1983)
[50] Kodama, H.; Sasaki, M., Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl., 78, 1 (1984)
[51] Mukhanov, VF, Quantum Theory of Gauge Invariant Cosmological Perturbations, Sov. Phys. JETP, 67, 1297 (1988)
[52] Hwang, J-c; Vishniac, ET, Gauge-invariant joining conditions for cosmological perturbations, Astrophys. J., 382, 363 (1991)
[53] Deruelle, N.; Mukhanov, VF, On matching conditions for cosmological perturbations, Phys. Rev. D, 52, 5549 (1995)
[54] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys.641 (2020) A10 [arXiv:1807.06211] [INSPIRE].
[55] Hinterbichler, K.; Joyce, A.; Khoury, J.; Miller, GEJ, DBI Realizations of the Pseudo-Conformal Universe and Galilean Genesis Scenarios, JCAP, 12, 030 (2012)
[56] Cai, Y-F; Gong, J-O; Pi, S.; Saridakis, EN; Wu, S-Y, On the possibility of blue tensor spectrum within single field inflation, Nucl. Phys. B, 900, 517 (2015) · Zbl 1331.83111
[57] Nishi, S.; Kobayashi, T., Reheating and Primordial Gravitational Waves in Generalized Galilean Genesis, JCAP, 04, 018 (2016)
[58] Cai, Y-F; Li, M.; Zhang, X., Emergent Universe Scenario via Quintom Matter, Phys. Lett. B, 718, 248 (2012)
[59] Cai, Y-F; Wan, Y.; Zhang, X., Cosmology of the Spinor Emergent Universe and Scale-invariant Perturbations, Phys. Lett. B, 731, 217 (2014) · Zbl 1368.83076
[60] Gibbons, GW; Hawking, SW, Cosmological Event Horizons, Thermodynamics, and Particle Creation, Phys. Rev. D, 15, 2738 (1977)
[61] W. Fischler and L. Susskind, Holography and cosmology, hep-th/9806039 [INSPIRE].
[62] Brandenberger, RH; Kanno, S.; Soda, J.; Easson, DA; Khoury, J.; Martineau, P., More on the spectrum of perturbations in string gas cosmology, JCAP, 11, 009 (2006)
[63] Kaloper, N.; Kofman, L.; Linde, AD; Mukhanov, V., On the new string theory inspired mechanism of generation of cosmological perturbations, JCAP, 10, 006 (2006)
[64] R.H. Brandenberger, String Gas Cosmology, pp. 193-230, 8, 2008 [arXiv:0808.0746] [INSPIRE].
[65] Rubakov, VA, Harrison-Zeldovich spectrum from conformal invariance, JCAP, 09, 030 (2009)
[66] Wang, Y.; Brandenberger, R., Scale-Invariant Fluctuations from Galilean Genesis, JCAP, 10, 021 (2012)
[67] Mironov, S.; Rubakov, V.; Volkova, V., Superluminality in beyond Horndeski theory with extra scalar field, Phys. Scripta, 95 (2020) · Zbl 1462.83011
[68] Adams, A.; Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Rattazzi, R., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014 (2006)
[69] J.-P. Bruneton, On causality and superluminal behavior in classical field theories: Applications to k-essence theories and MOND-like theories of gravity, Phys. Rev. D75 (2007) 085013 [gr-qc/0607055] [INSPIRE].
[70] Babichev, E.; Mukhanov, V.; Vikman, A., k-Essence, superluminal propagation, causality and emergent geometry, JHEP, 02, 101 (2008)
[71] Gao, X.; Hong, X-Y, Propagation of gravitational waves in a cosmological background, Phys. Rev. D, 101 (2020)
[72] Kang, JU; Vanchurin, V.; Winitzki, S., Attractor scenarios and superluminal signals in k-essence cosmology, Phys. Rev. D, 76 (2007)
[73] Deffayet, C.; Pujolàs, O.; Sawicki, I.; Vikman, A., Imperfect Dark Energy from Kinetic Gravity Braiding, JCAP, 10, 026 (2010)
[74] Dobre, DA; Frolov, AV; Gálvez Ghersi, JT; Ramazanov, S.; Vikman, A., Unbraiding the Bounce: Superluminality around the Corner, JCAP, 03, 020 (2018) · Zbl 1530.83047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.