×

A contraction analysis of the convergence of risk-sensitive filters. (English) Zbl 1346.60055

Summary: A contraction analysis of risk-sensitive Riccati equations is proposed. When the state-space model is reachable and observable, a block-update implementation of the risk-sensitive filter is used to show that the \(N\)-fold composition of the Riccati map is strictly contractive with respect to the Thompson’s part metric of positive definite matrices, when \(N\) is larger than the number of states. The range of values of the risk-sensitivity parameter for which the map remains contractive can be estimated a priori. It is also found that a second condition must be imposed on the risk-sensitivity parameter and on the initial error variance to ensure that the solution of the risk-sensitive Riccati equation remains positive definite at all times. The two obtained conditions can be viewed as extensions to the multivariable case of an earlier analysis of Whittle for the scalar case.

MSC:

60G35 Signal detection and filtering (aspects of stochastic processes)
93E11 Filtering in stochastic control theory
62M20 Inference from stochastic processes and prediction
93B35 Sensitivity (robustness)

References:

[1] B. D. O. Anderson and J. B. Moore, {\it \it Optimal Filtering}, Prentice-Hall, Englewood Cliffs, NJ, 1979. · Zbl 0688.93058
[2] J. P. Aubin and I. Ekeland, {\it Applied Nonlinear Analysis}, Wiley, New York, 1984. · Zbl 0641.47066
[3] R. N. Banavar and J. L. Speyer, {\it Properties of risk-sensitive filters/estimators}, IEE Proc. Control Theory Appl., 145 (1998). · Zbl 0907.93058
[4] R. Bhatia, {\it On the exponential metric increasing property}, Linear Algebra Appl., 375 (2003), pp. 211-220. · Zbl 1052.15013
[5] P. Bougerol, {\it Kalman filtering with random coefficients and contractions}, SIAM J. Control Optim., 31 (1993), pp. 942-959. · Zbl 0785.93040
[6] R. Davies, P. Shi, and P. Wiltshire, {\it New upper solution bounds of the discrete algebraic Riccati matrix equation}, J. Comput. Appl. Math., 213 (2008), pp. 307-317. · Zbl 1143.65034
[7] S. Gaubert and Z. Qu, {\it The contraction rate in Thompson’s part metric of order-preserving fows on a cone–Application to generalized Riccati equations}, J. Differential Equations, 256 (2014), pp. 2902-2948. · Zbl 1291.93327
[8] L. P. Hansen and T. J. Sargent, {\it Robustness}, Princeton University Press, Princeton, NJ, 2008. · Zbl 1134.93001
[9] B. Hassibi, A. H. Sayed, and T. Kailath, {\it Linear estimation in Krein spaces. I. Theory}, IEEE Trans. Automat. Control, 41 (1996), pp. 18-33. · Zbl 0862.93055
[10] B. Hassibi, A. H. Sayed, and T. Kailath, {\it Linear estimation in Krein spaces. II. Applications}, IEEE Trans. Automat. Control, 41 (1996), pp. 34-49. · Zbl 0862.93056
[11] B. Hassibi, A. H. Sayed, and T. Kailath, {\it Indefinite-Quadratic Estimation and Control: A Unified Approach to \(H^2\) and \(H^∞\) Theories}, SIAM, Philadelphia, 1999. · Zbl 0997.93506
[12] M. Ito, Y. Seo, T. Yamazaki, and M. Yanagida, {\it Geometric properties of positive definite matrices cone with respect to the Thompson metric}, Linear Algebra Appl., 435 (2011). · Zbl 1221.15045
[13] T. Kailath, {\it Linear Systems}, Prentice Hall, Englewood Cliffs, NJ, 1980. · Zbl 0454.93001
[14] T. Kailath, A. H. Sayed, and B. Hassibi, {\it Linear Estimation}, Prentice Hall, Upper Saddle River, NJ, 2000. · Zbl 0980.93077
[15] R. E. Kalman and R. S. Bucy, {\it New results in filtering and prediction theory}, Trans. ASME Ser. D J. Basic Eng., 83 (1961), pp. 95-107.
[16] S. W. Kim and P. G. Park, {\it Matrix bounds of the discrete ARE solution}, Systems Control Lett., 36 (1999), pp. 15-20. · Zbl 0913.93044
[17] J. Lawson and Y.Lim, {\it The symplectic semigroup and Riccati differential equations}, J. Dyn. Control Syst., 12 (2006), pp. 49-77. · Zbl 1118.49029
[18] J. Lawson and Y.Lim, {\it A Birkhoff contraction formula with applications to Riccati equations}, SIAM J. Control Optim., 46 (2007), pp. 930-951. · Zbl 1357.49132
[19] H. Lee and Y. Lim, {\it Invariant metrics, contractions and nonlinear matrix equations}, Nonlinearity, 2 (2008), pp. 857-878. · Zbl 1153.15020
[20] B. C. Levy and R. Nikoukhah, {\it Robust state-space filtering under incremental model perturbations subject to a relative entropy tolerance}, IEEE Trans. Automat. Control, 58 (2013), pp. 682-695. · Zbl 1369.93636
[21] A.-P. Liao, G. Yao, and X.-F. Duan, {\it Thompson metric method for solving a class of nonlinear matrix equations}, Appl. Math. Comput., 216 (2010), pp. 1831-1836. · Zbl 1226.65034
[22] J. L. Speyer, J. Deyst, and D. H. Jacobson, {\it Optimization of stochastic linear systems with additive measurement and process noise using exponential performance criteria}, IEEE Trans. Automat. Control, 19 (1974), pp. 358-366. · Zbl 0282.93065
[23] J. L. Speyer, C.-H. Fan, and R. N. Banavar, {\it Optimal stochastic estimation with exponential cost crireria}, in Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, 1992, pp. 2293-2298.
[24] A. Thompson, {\it On certain contraction mappings in a partially ordered vector space}, Proc. Amer. Math. Soc., 14 (1963), pp. 438-443. · Zbl 0147.34903
[25] P. Whittle, {\it Risk-sensitive Optimal Control}, Wiley, Chichester, UK, 1980. · Zbl 0718.93068
[26] M. Zorzi, {\it Rational approximations of spectral densities based on the Alpha divergence}, Math. Control Signals Systems, 26 (2014), pp. 259-278. · Zbl 1290.93172
[27] M. Zorzi, {\it Multivariate Spectral Estimation based on the concept of Optimal Prediction}, IEEE Trans. Automat. Control, 60 (2015), pp. 1647-1652. · Zbl 1360.62285
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.