×

Numerical-symbolic methods for searching relative equilibria in the restricted problem of four bodies. (English) Zbl 1488.70015

Summary: We discuss here the problem of solving the system of two nonlinear algebraic equations determining the relative equilibrium positions in the planar circular restricted four-body problem formulated on the basis of the Euler collinear solution of the three-body problem. The system contains two parameters \(\mu_1 , \mu_2\) and all its solutions coincide with the corresponding solutions in the three-body problem if one of the parameters equals to zero. For small values of one parameter the solutions are found in the form of power series in terms of this parameter, and they are used for separation of different solutions and choosing the starting point in the numerical procedure for the search of equilibria. Combining symbolic and numerical computation, we found all the equilibrium positions and proved that there are 18 different equilibrium configurations of the system for any reasonable values of the two system parameters \(\mu_1 , \mu_2\). All relevant symbolic and numerical calculations are performed with the aid of the computer algebra system Wolfram Mathematica.

MSC:

70F10 \(n\)-body problems
68W30 Symbolic computation and algebraic computation
70-08 Computational methods for problems pertaining to mechanics of particles and systems

Software:

Mathematica

References:

[1] A. Albouy, H.E. Cabral and A.A. Santos. Some problems of the classical n-body problem. Celestial Mechanics and Dynamical Astronomy, 113(4):369-375, 2012. https://doi.org/10.1007/s10569-012-9431-1. · doi:10.1007/s10569-012-9431-1
[2] M. Alvares-Ramirez, J.E.F. Skea and T.J. Stuchi. Nonlinear stability analysis in a equilateral restricted four-body problem. Astrophysics and Space Science, 358(1):3, 2015. https://doi.org/10.1007/s10509-015-2333-4. · doi:10.1007/s10509-015-2333-4
[3] R.E. Arenstrof. Central configurations of four bodies with one inferior mass. Celestial Mechanics, 28(1-2):9-15, 1982. https://doi.org/10.1007/BF01230655. · Zbl 0507.70008 · doi:10.1007/BF01230655
[4] D. Boccaletti and G. Pucacco. Theory of orbits. Volume 1: Integrable systems and non-perturbative methods. 3rd edn. Astronomy and Astrophysics Library. Springer-Verlag, Berlin Heidelberg, 2004. https://doi.org/10.1007/978-3-662-03319-7. · Zbl 1372.70003 · doi:10.1007/978-3-662-03319-7
[5] V.A. Brumberg. Celestial mechanics: past, present, future. Solar System Re-search, 47(5):347-358, 2013. https://doi.org/10.1134/S0038094613040011. · doi:10.1134/S0038094613040011
[6] D.A. Budzko and A.N. Prokopenya. Symbolic-numerical analysis of equilibrium solutions in a restricted four-body problem. Programming and Computer Soft-ware, 36(2):68-74, 2010. https://doi.org/10.1134/S0361768810020039. · Zbl 1343.70012 · doi:10.1134/S0361768810020039
[7] D.A. Budzko and A.N. Prokopenya. On the stability of equilibrium positions in the circular restricted four-body problem. In V.P. Gerdt, W. Koepf, E.W. Mayr and E.V. Vorozhtsov(Eds.), Computer Algebra in Scientific Computing, volume 6885 of Lecture Notes in Computer Science, pp. 88-100, Berlin, Heidelberg, 2011. Springer-Verlag. https://doi.org/10.1007/978-3-642-23568-9 8. · Zbl 1343.70013 · doi:10.1007/978-3-642-23568-9_8
[8] D.A. Budzko and A.N. Prokopenya. Stability of equilibrium positions in the spa-tial circular restricted four-body problem. In V.P. Gerdt, W. Koepf, E.W. Mayr and E.V. Vorozhtsov(Eds.), Computer Algebra in Scientific Computing, volume 7442 of Lecture Notes in Computer Science, pp. 72-83, Berlin, Heidelberg, 2012. Springer-Verlag. https://doi.org/10.1007/978-3-642-32973-9 7. · Zbl 1375.70037 · doi:10.1007/978-3-642-32973-9_7
[9] D.A. Budzko and A.N. Prokopenya. Symbolic-numerical meth-ods for searching equilibrium states in a restricted four-body prob-lem. Programming and Computer Software, 39(2):74-80, 2013. https://doi.org/10.1134/S0361768813020035. · Zbl 1325.70028 · doi:10.1134/S0361768813020035
[10] E.A. Grebenikov, E.V. Ikhsanov and A.N. Prokopenya. Numeric-symbolic com-putations in the study of central configurations in the planar Newtonian four-body problem. In V.G. Ganzha, E.W. Mayr and E.V. Vorozhtsov(Eds.), Com-puter Algebra in Scientific Computing, volume 4194 of Lecture Notes in Computer Science, pp. 192-204, Berlin, Heidelberg, 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11870814 16. · Zbl 1141.68694 · doi:10.1007/11870814_16
[11] R. Kozera. Asymptotics for length and trajectory from cumulative chord piecewise-quarties. Fundamenta Informaticae, 61(3):267-283, 2004. · Zbl 1057.65005
[12] A.P. Markeev. Libration points in celestial mechanics and cosmic dynamics. Nauka, Moscow, 1978. (in Russian) · Zbl 1454.70002
[13] J.I. Palmore. Collinear relative equilibria of the planar n-body problem. Celestial Mechanics, 28(1):17-24, 1982. https://doi.org/10.1007/BF01230656. · Zbl 0511.70011 · doi:10.1007/BF01230656
[14] A.N. Prokopenya. Computing the stability boundaries for the La-grange triangular solutions in the elliptic restricted three-body prob-lem. Mathematical Modelling and Analysis, 11(1):95-104, 2006. https://doi.org/10.1080/13926292.2006.9637305. · Zbl 1105.70006 · doi:10.1080/13926292.2006.9637305
[15] A.N. Prokopenya. Hamiltonian normalization in the restricted many-body problem by computer algebra methods. Programming and Computer Software, 38(3):156-166, 2012. https://doi.org/10.1134/S0361768812030048. · Zbl 1329.70036 · doi:10.1134/S0361768812030048
[16] A.N. Prokopenya. Symbolic-numerical analysis of the relative equilibria stability in the planar circular restricted four-body problem. In V.P. Gerdt, W. Koepf, W.M. Seiler and E.V. Vorozhtsov(Eds.), Computer Algebra in Scientific Com-puting, volume 10490 of Lecture Notes in Computer Science, pp. 329-345, Cham, 2017. Springer International Publishing. https://doi.org/10.1007/978-3-319-66320-3 24. · Zbl 1458.70007 · doi:10.1007/978-3-319-66320-3_24
[17] A.E. Roy. Orbital motion. 4th edn. Institute of Physics Publishing, Bristol and Philadephia, 2005.
[18] D.G. Saari. On the role and the properties of n-body central configurations. Celestial Mechanics, 21:9-20, 1980. https://doi.org/10.1007/BF01230241. · Zbl 0422.70014 · doi:10.1007/BF01230241
[19] C. Simó. Relative equilibrium solutions in the four-body problem. Celestial Mechanics, 18(2):165-184, 1978. https://doi.org/10.1007/BF01228714. · Zbl 0394.70009 · doi:10.1007/BF01228714
[20] S. Smale. Mathematical problems for the next century. The mathematical Intel-ligencer, 20(2):7-15, 1998. https://doi.org/10.1007/BF03025291. · Zbl 0947.01011 · doi:10.1007/BF03025291
[21] K.F. Sundman. Mémoire sur le problème des trios corps. Acta Mathematica, 36(1):105-179, 1912. · JFM 43.0826.01
[22] V.G. Szebehely. Theory of orbits. The restricted problem of three bodies. Aca-demic Press, New York, London, 1967. Translated from Astronomicheskii Zhur-nal, vol. 46, no. 2, pp. 459-460 · Zbl 1372.70004
[23] A. Wintner. The analytical foundations of Celestial Mechanics. Princeton Uni-versity Press, Princeton, New York, 1941. · JFM 67.0785.01
[24] S. Wolfram. An elementary introduction to the Wolfram Language. 2nd edition. Wolfram Media, Champaign, IL, USA, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.