×

A parallel solver for large scale DFN flow simulations. (English) Zbl 1320.65167

Summary: Flows in fractured media have been modeled using many different approaches in order to get reliable and efficient simulations for many critical applications. The common issues to be tackled are the wide range of scales involved in the phenomenon, the complexity of the domain, and the huge computational cost. In the present paper we propose a parallel implementation of the PDE-constrained optimization method presented in our ealier work for dealing with arbitrary discrete fracture networks (DFNs) on nonconforming grids. We show the scalability performances and the efficiency of the parallel algorithm, and we also test the robustness of the method on complex and strongly connected DFN configurations which would be very difficult to mesh using conventional approaches relying on some kind of mesh conformity at the interfaces.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65J15 Numerical solutions to equations with nonlinear operators
68U20 Simulation (MSC2010)
68W10 Parallel algorithms in computer science
68W40 Analysis of algorithms
76S05 Flows in porous media; filtration; seepage

Software:

FracSim3D; Eigen; METIS

References:

[1] M. F. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò, {\it The virtual element method for discrete fracture network simulations}, Comput. Methods Appl. Mech. Engrg., 280 (2014), pp. 135-156. · Zbl 1423.74863
[2] S. Berrone, C. Canuto, S. Pieraccini, and S. Scialò, {\it Uncertainty quantification in discrete fracture network models: Stochastic fracture transmissivity}, Politecnico di Torino, http://porto.polito.it/id/eprint/2564948, 2014. · Zbl 1443.76210
[3] S. Berrone, S. Pieraccini, and S. Scialò, {\it A PDE-constrained optimization formulation for discrete fracture network flows}, SIAM J. Sci. Comput., 35 (2013a2013), pp. B487-B510. · Zbl 1266.65188
[4] S. Berrone, S. Pieraccini, and S. Scialò, {\it On simulations of discrete fracture network flows with an optimization-based extended finite element method}, SIAM J. Sci. Comput., 35 (2013b2013), pp. A908-A935. · Zbl 1266.65187
[5] S. Berrone, S. Pieraccini, and S. Scialò, {\it An optimization approach for large scale simulations of discrete fracture network flows}, J. Comput. Phys., 256 (2014), pp. 838-853. · Zbl 1349.76806
[6] D. Billaux, J.P. Chiles, K. Hestir, and J. Long, {\it Three-dimensional statistical modelling of a fractured rock mass: An example from the Fanay-Augéres mine}, Internat. J. Rock Mech. Mining Sci. Geomech. Abstracts, 26 (1989), pp. 281-299.
[7] E. Bonnet, O. Bour, N. E. Odling, P. Davy, I. Main, P. Cowie, and B. Berkowitz, {\it Scaling of fracture systems in geological media}, Rev. Geophys., 39 (2001), pp. 347-383.
[8] M. C. Cacas, E. Ledoux, G. de Marsily, B. Tillie, A. Barbreau, E. Durand, B. Feuga, and P. Peaudecerf, {\it Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation: 1. The flow model}, Water Resour. Res., 26 (1990), pp. 479-489.
[9] G. Cammarata, C. Fidelibus, M. Cravero, and G. Barla, {\it The hydro-mechanically coupled response of rock fractures}, Rock Mech. Rock Engrg., 40 (2007), pp. 41-61.
[10] P. Davy, O. Bour, J.-R. De Dreuzy, and C. Darcel, {\it Flow in multiscale fractal fracture networks}, Geol. Soc. London Special Publications, 261 (2006), pp. 31-45.
[11] G. de Marsily, F. Delay, J. Gonçalvés, Ph. Renard, V. Teles, and S. Violette, {\it Dealing with spatial heterogeneity}, Hydrogeology J., 13 (2005), pp. 161-183.
[12] W. S. Dershowitz and H. H. Einstein, {\it Characterizing rock joint geometry with joint system models}, Rock Mech. Rock Engrg., 1 (1988), pp. 21-51.
[13] W. S. Dershowitz and C. Fidelibus, {\it Derivation of equivalent pipe networks analogues for three-dimensional discrete fracture networks by the boundary element method}, Water Resour. Res., 35 (1999), pp. 2685-2691.
[14] C. R. Dohrmann, {\it An approximate BDDC preconditioner}, Numer. Linear Algebra Appl., 14 (2007), pp. 149-168. · Zbl 1199.65088
[15] B. Dverstorp and J. Andersson, {\it Application of the discrete fracture network concept with field data: Possibilities of model calibration and validation}, Water Resour. Res., 25 (1989), pp. 540-550.
[16] Eigen, {\it Eigen documentation}, http://eigen.tuxfamily.org/dox/, 2014.
[17] J. Erhel, J.-R. de Dreuzy, and B. Poirriez, {\it Flow simulation in three-dimensional discrete fracture networks}, SIAM J. Sci. Comput., 31 (2009), pp. 2688-2705. · Zbl 1387.65124
[18] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, {\it FETI-DP: A dual-primal unified FETI method. I. A faster alternative to the two-level FETI method}, Internat. J. Numer. Methods Engrg., 50 (2001), pp. 1523-1544. · Zbl 1008.74076
[19] L. Formaggia, A. Fumagalli, A. Scotti, and P. Ruffo, {\it A reduced model for Darcy’s problem in networks of fractures}, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 1089-1116. · Zbl 1299.76254
[20] B. Gylling, L. Birgersson, L. Moreno, and I. Neretnieks, {\it Analysis of a long-term pumping and tracer test using the channel network model}, J. Contaminant Hydrology, 32 (1998), pp. 203-222.
[21] P. A. Hsieh, {\it Scale effects in fluid flow through fractured geologic media}, in Scale Dependence and Scale Invariance in Hydrology, G. Sposito, ed., Cambridge University Press, Cambridge, UK, 1998, pp. 335-353. · Zbl 1152.76300
[22] T. Kalbacher, R. Mettier, C. McDermott, W. Wang, G. Kosakowski, T. Taniguchi, and O. Kolditz, {\it Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel rock laboratory}, Comput. Geosci., 11 (2007), pp. 9-26. · Zbl 1168.86300
[23] G. Karypis, {\it METIS software}, http://glaros.dtc.umn.edu/gkhome/metis/metis/overview, 2013.
[24] G. Karypis and V. Kumar, {\it A fast and high quality multilevel scheme for partitioning irregular graphs}, SIAM J. Sci. Comput., 20 (1998), pp. 359-392. · Zbl 0915.68129
[25] V. Lenti and C. Fidelibus, {\it A BEM solution of steady-state flow problems in discrete fracture networks with minimization of core storage}, Comput. Geosci., 29 (2003), pp. 1183-1190.
[26] J. C. S. Long, P. Gilmour, and P. A. Witherspoon, {\it A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures}, Water Resour. Res., 21 (1985), pp. 1105-1115.
[27] J. Mandel, {\it Balancing domain decomposition}, Comm. Numer. Methods Engrg., 9 (1993), pp. 233-241. · Zbl 0796.65126
[28] J. Mandel and M. Brezina, {\it Balancing domain decomposition for problems with large jumps in coefficients}, Math. Comp., 65 (1996), pp. 1387-1401. · Zbl 0853.65129
[29] J. Mandel and C. R. Dohrmann, {\it Convergence of a balancing domain decomposition by constraints and energy minimization}, Numer. Linear Algebra Appl., 10 (2003), pp. 639-659. · Zbl 1071.65558
[30] H. Mustapha and K. Mustapha, {\it A new approach to simulating flow in discrete fracture networks with an optimized mesh}, SIAM J. Sci. Comput., 29 (2007), pp. 1439-1459. · Zbl 1251.76056
[31] B. Nøetinger and N. Jarrige, {\it A quasi steady state method for solving transient Darcy flow in complex \(3\) D fractured networks}, J. Comput. Phys., 231 (2012), pp. 23-38. · Zbl 1415.76460
[32] A. W. Nordqvist, Y. W. Tsang, C. F. Tsang, B. Dverstop, and J. Andersson, {\it A variable aperture fracture network model for flow and transport in fractured rocks}, Water Resour. Res., 28 (1992), pp. 1703-1713.
[33] P. Panfili and A. Cominelli, {\it Simulation of miscible gas injection in a fractured carbonate reservoir using an embedded discrete fracture model}, in Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, SPE International, Richardson, TX, 2014, SPE-171830-MS.
[34] G. Pichot, J. Erhel, and J. de Dreuzy, {\it A mixed hybrid mortar method for solving flow in discrete fracture networks}, Appl. Anal., 89 (2010), pp. 1629-643. · Zbl 1387.65122
[35] G. Pichot, J. Erhel, and J. de Dreuzy, {\it A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks}, SIAM J. Sci. Comput., 34 (2012), pp. B86-B105. · Zbl 1387.65121
[36] G. Pichot, B. Poirriez, J. Erhel, and J.-R. de Dreuzy, {\it A mortar BDD method for solving flow in stochastic discrete fracture networks}, in Domain Decomposition Methods in Science and Engineering XXI, Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2014, pp. 99-112. · Zbl 1380.74112
[37] A. Quarteroni and A. Valli, {\it Domain Decomposition Methods for Partial Differential Equations}, Numer. Math. Sci.c Comput., Clarendon Press, Oxford, UK, 1999. · Zbl 0931.65118
[38] A. Toselli and O.B. Widlund, {\it Domain Decomposition Methods–Algorithms and Theory}, Springer Ser. Comput. Math. 34, Springer, Berlin, 2005. · Zbl 1069.65138
[39] M. Verscheure, A. Fourno, and J.-P. Chilès, {\it Joint inversion of fracture model properties for \(CO_2\) storage monitoring or oil recovery history matching}, Oil Gas Sci. Tech. Rev. IFP Energies Nouvelles, 67 (2012), pp. 221-235.
[40] M. Vohralík, J. Maryška, and O. Severýn, {\it Mixed and nonconforming finite element methods on a system of polygons}, Appl. Numer. Math., 51 (2007), pp. 176-193. · Zbl 1112.65123
[41] C. Xu and P. Dowd, {\it A new computer code for discrete fracture network modelling}, Computers Geosci., 36 (2010), pp. 292-301.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.