×

Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences. (English) Zbl 1440.90068

Summary: We propose a new credibility portfolio selection model, in which a measure of loss aversion is introduced as an objective function, joint to the expected value of the returns and the below-mean absolute semi-deviation as a risk measure. The uncertainty of the future returns is directly approximated using the historical returns on the portfolios, so the uncertain return on a given portfolio is modeled as an LR-power fuzzy variable. Quantifying the uncertainty by means of a credibility distribution allows us to measure the investors’ loss aversion as the credibility of achieving a non-positive return, which is better perceived by investors than other measures of risk. Furthermore, we analyze the relationships between the three objective functions, showing that the risk measure and the loss aversion function are practically uncorrelated. Thus, the information provided by these criteria do not overlap each other. In order to generate several non-dominated portfolios taking into account the investor’s preferences and that the problem is non-linear and non-convex, we apply up to three preference-based EMO algorithms. These algorithms allow to approximate a part of the Pareto optimal front called region of interest. We analyze three investor profiles taking into account their loss-adverse attitudes: conservative, cautious and aggressive. A computational study is performed with data of the Spanish stock market, showing the important role played by the loss aversion function to generate a diversified set of non-dominated portfolios fitting the expectations of each investor.

MSC:

90C29 Multi-objective and goal programming
91G10 Portfolio theory

Software:

jMetal; NSGA-II
Full Text: DOI

References:

[1] Anagnostopoulos, Kp; Mamanis, G., A portfolio optimization model with three objectives and discrete variables, Comput. Oper. Res., 37, 7, 1285-1297 (2010) · Zbl 1178.90299
[2] Bermudez, Jd; Segura, Jv; Vercher, E., A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection, Fuzzy Sets Syst., 188, 16-26 (2012) · Zbl 1238.91142
[3] Branke, J.; Branke, J.; Deb, K.; Miettinen, K.; Slowinski, R., Consideration of partial user preferences in evolutionary multiobjective optimization, Multiobjective Optimization, Interactive and Evolutionary Approaches, 157-178 (2008), Berlin: Springer, Berlin · Zbl 1147.68304
[4] Branke, J.; Deb, K.; Miettinen, K.; Slowinski, R., Multiobjective Optimization. Interactive and Evolutionary Approaches (2008), Berlin: Springer, Berlin · Zbl 1147.68304
[5] Chang, Tj; Yang, Sc; Chang, Kj, Portfolio optimization problems in different risk measures using genetic algorithm, Expert Syst. Appl., 36, 7, 10529-10537 (2009)
[6] Coello, Cac; Lamont, Gb; Veldhuizen, Dav, Evolutionary Algorithms for Solving Multi-Objective Problems (2007), New York: Springer, New York · Zbl 1142.90029
[7] Deb, K., Multi-objective Optimization using Evolutionary Algorithms (2001), Chichester: Wiley, Chichester · Zbl 0970.90091
[8] Deb, K.; Miettinen, K.; Ehrgott, M.; Naujoks, B.; Stewart, Tj; Wallenius, J., Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search, Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, 339-354 (2010), Berlin: Springer, Berlin · Zbl 1184.90151
[9] Deb, K.; Miettinen, K.; Chaudhuri, S., Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches, IEEE Trans. Evol. Comput., 14, 6, 821-841 (2010)
[10] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[11] Dubois, D.; Prade, H., Fundamentals of Fuzzy Sets (2000), New York: Springer, New York · Zbl 0942.00007
[12] Durillo, Jj; Nebro, Aj, jMetal: a Java framework for multi-objective optimization, Adv. Eng. Softw., 42, 760-771 (2011)
[13] Ehrgott, M.; Klamroth, K.; Schwehm, C., An MCDM approach to portfolio optimization, Eur. J. Oper. Res., 155, 3, 752-770 (2004) · Zbl 1043.91016
[14] Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: International Conference on Genetic Algorithms, pp. 416-423. Morgan Kaufmann Publishers Inc. (1993)
[15] Huang, X., Mean-semivariance models for fuzzy portfolio selection, J. Comput. Appl. Math., 217, 1, 1-8 (2008) · Zbl 1149.91033
[16] Jalota, H.; Thakur, M.; Mittal, G., Modelling and constructing membership function for uncertain portfolio parameters: a credibilistic framework, Expert Syst. Appl., 71, 40-56 (2017)
[17] Jaszkiewicz, A.; Branke, J.; Branke, J.; Deb, K.; Miettinen, K.; Slowinski, R., Interactive multiobjective evolutionary algorithms, Multiobjective Optimization, Interactive and Evolutionary Approaches, 179-193 (2008), Berlin: Springer, Berlin · Zbl 1147.68304
[18] Li, X.; Qin, Z.; Kar, S., Mean-variance-skewness model for portfolio selection with fuzzy returns, Eur. J. Oper. Res., 202, 1, 239-247 (2010) · Zbl 1175.90438
[19] Liu, B., A survey of credibility theory, Fuzzy Optim. Decis. Making, 5, 387-408 (2006) · Zbl 1133.90426
[20] Liu, B.; Liu, Yk, Expected value of fuzzy variable and fuzzy expected value models, IEEE Trans. Fuzzy Syst., 10, 4, 445-450 (2002)
[21] Markowitz, Hm, Portfolio selection, J. Finance, 7, 1, 77-91 (1952)
[22] Metaxiotis, K.; Liagkouras, K., Multiobjective evolutionary algorithms for portfolio management: a comprehensive literature review, Expert Syst. Appl., 39, 14, 11685-11698 (2012)
[23] Miettinen, K., Nonlinear Multiobjective Optimization (1999), Boston: Kluwer Academic Publishers, Boston · Zbl 0949.90082
[24] Molina, J.; Santana, Lv; Hernandez-Diaz, Ag; Coello, Cac; Caballero, R., g-dominance: reference point based dominance for multiobjective metaheuristics, Eur. J. Oper. Res., 197, 2, 685-692 (2009) · Zbl 1159.90424
[25] Moral-Escudero, R., Ruiz-Torrubiano, R., Suarez, A.: Selection of optimal investment portfolios with cardinality constraints. In: IEEE Congress on Evolutionary Computation, pp. 2382-2388 (2006)
[26] Ormos, M.; Timotity, D., Generalized asset pricing: expected downside risk-based equilibrium modeling, Econ. Model., 52, 967-980 (2016)
[27] Rockafellar, Rt; Uryasev, S., Conditional value-at-risk for general loss distributions, J. Bank. Finance, 26, 7, 1443-1471 (2002)
[28] Rodriguez, R.; Luque, M.; Gonzalez, M., Portfolio selection in the Spanish stock market by interactive multiobjective programming, TOP, 19, 1, 213-231 (2011)
[29] Ruiz, A.B., Saborido, R., Bermudez, J.D., Luque, M., Vercher, E.: Preference-based evolutionary multi-objective optimization for solving fuzzy portfolio selection problems. Revista Electronica de Comunicaciones y Trabajos de ASEPUMA. Rect@ 18, 1-15 (2017) · Zbl 1440.90068
[30] Ruiz, Ab; Saborido, R.; Luque, M., A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm, J. Global Optim., 62, 1, 101-129 (2015) · Zbl 1329.90132
[31] Saborido, R.; Ruiz, Ab; Bermudez, Jd; Vercher, E.; Luque, M., Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection, Appl. Soft Comput., 39, 48-63 (2016)
[32] Steuer, Re; Qi, Y.; Hirschberger, M., Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection, Ann. Oper. Res., 152, 297-317 (2007) · Zbl 1132.91480
[33] Vercher, E.; Bermudez, Jd; Doumpos, M.; Zopounidis, C.; Pardalos, Pm, Fuzzy portfolio selection models: a numerical study, Financial Decision Making Using Computational Intelligence, 253-280 (2012), Boston: Springer, Boston
[34] Vercher, E.; Bermudez, Jd, A possibilistic mean-downside risk-skewness model for efficient portfolio selection, IEEE Trans. Fuzzy Syst., 21, 3, 585-595 (2013)
[35] Vercher, E.; Bermudez, Jd, Portfolio optimization using a credibility mean-absolute semi-deviation model, Expert Syst. Appl., 42, 7121-7131 (2015)
[36] Vercher, E.; Bermudez, Jd; Gil, E.; Gil, E.; Gil, J.; Gil, Ma, Measuring uncertainty in the portfolio selection problem. Studies in systems, decision and control, The Mathematics of the Uncertainty, 765-775 (2018), Cham: Springer, Cham
[37] Vercher, E.; Bermudez, Jd; Segura, Jv, Fuzzy portfolio optimization under downside risk measures, Fuzzy Sets Syst., 158, 769-782 (2007) · Zbl 1190.91140
[38] Wang, S.; Xia, Y., Portfolio Selection and Asset Pricing (2002), Berlin: Springer, Berlin · Zbl 0987.91033
[39] Zadeh, La, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 1, 3-28 (1978) · Zbl 0377.04002
[40] Zitzler, E.; Thiele, L., Multiobjective evolutionary algorithms: a comparative case study and the Strength Pareto Approach, IEEE Trans. Evol. Comput., 3, 4, 257-271 (1999)
[41] Zopounidis, C.; Doumpos, M., Multicriteria decision systems for financial problems, TOP, 21, 2, 241-261 (2013) · Zbl 1273.90101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.