×

Joint response graphs and separation induced by triangular systems. (English) Zbl 1050.05116

Summary: We consider joint probability distributions generated recursively in terms of univariate conditional distributions satisfying conditional independence restrictions. The independences are captured by missing edges in a directed graph. A matrix form of such a graph, called the generating edge matrix, is triangular, so the distributions that are generated over such graphs are called triangular systems. We study consequences of triangular systems after grouping or reordering of the variables for analyses as chain graph models, i.e., for alternative recursive factorizations of the given density using joint conditional distributions. For this we introduce families of linear triangular equations which do not require assumptions of distributional form. The strength of the associations that are implied by such linear families for chain graph models is derived. The edge matrices of chain graphs that are implied by any triangular system are obtained by appropriately transforming the generating edge matrix. It is shown how induced independences and dependences can be studied by graphs, by edge matrix calculations and via the properties of densities. Some ways of using the results are illustrated.

MSC:

05C90 Applications of graph theory
62E99 Statistical distribution theory
62E15 Exact distribution theory in statistics
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)

Software:

MIM
Full Text: DOI

References:

[1] Birch M. W., J. R. Statist. Soc. 25 pp 220– (1963)
[2] Cochran W. G., J. R. Statist. Soc. 5 pp 171– (1938)
[3] Cox D. R., Biometrika 79 pp 441– (1992)
[4] Cox D. R., Statist. Sci. 8 pp 204– (1993)
[5] Cox D. R., Multivariate Dependencies-Models, Analysis and Interpretation (1996) · Zbl 0880.62124
[6] DOI: 10.1111/1467-9469.00145 · Zbl 0934.62007 · doi:10.1111/1467-9469.00145
[7] Cramer H., Mathematical Methods of Statistics (1946)
[8] Darroch J. N., J. R. Statist. Soc. 24 pp 251– (1962)
[9] Dempster A. P., Elements of Continuous Multivariate Analysis (1969) · Zbl 0197.44904
[10] Edwards D., Introduction to Graphical Modelling (2000) · Zbl 0952.62003 · doi:10.1007/978-1-4612-0493-0
[11] Frydenberg M., Scand. J. Statist. 17 pp 333– (1990)
[12] Geiger D., Uncertainty in Artificial Intelligence IV pp 136– (1990)
[13] Green P. J., Models for Highly Structured Stochastic Systems (2003)
[14] Koster J. T. A., Bernoulli 8 pp 817– (2002)
[15] Kotz S., Encyclopedia of Statistical Sciences pp 82– (1982)
[16] Lauritzen S. L., Graphical Models (1996) · Zbl 0907.62001
[17] Lauritzen S. L., Networks 20 pp 491– (1990)
[18] Lauritzen S. L., Ann. Statist. 17 pp 31– (1989)
[19] DOI: 10.1214/aos/1015345961 · Zbl 1043.62080 · doi:10.1214/aos/1015345961
[20] Meek C., Proc. 11th A. Conf. Uncertainty in Artificial Intelligence pp 411– (1995)
[21] Pearl J., Probabilistic Reasoning in Intelligent Systems (1988) · Zbl 0746.68089
[22] DOI: 10.1111/1467-9469.00323 · Zbl 1035.60005 · doi:10.1111/1467-9469.00323
[23] DOI: 10.1214/aos/1031689015 · Zbl 1033.60008 · doi:10.1214/aos/1031689015
[24] Searle S. R., Matrix Algebra for the Biological Sciences (1966) · Zbl 0137.39702
[25] Smith J. Q., Ann. Statist. 17 pp 654– (1989)
[26] Spirtes P., Causation, Prediction and Search (1993) · doi:10.1007/978-1-4612-2748-9
[27] DOI: 10.1214/aos/1024691250 · Zbl 0930.62066 · doi:10.1214/aos/1024691250
[28] Wermuth N., J. R. Statist. Soc. 49 pp 353– (1987)
[29] Wermuth N., Rev. Bras. Probil. Estatist. 6 pp 1– (1992)
[30] Wermuth N., Highly Structured Stochastic Systems pp 47– (2003)
[31] Wermuth N., Bernoulli 4 pp 477– (1998)
[32] Wermuth N., Encyclopedia of Biostatistics pp 4260– (1998)
[33] Wermuth N., International Encyclopedia of the Social and Behavioral Sciences 9 pp 6379– (2001) · doi:10.1016/B0-08-043076-7/00440-X
[34] Wermuth N., J. R. Statist. Soc. 52 pp 21– (1990)
[35] Whittaker J., Graphical Models in Applied Multivariate Statistics (1990) · Zbl 0732.62056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.