×

Learning optimal solutions via an LSTM-optimization framework. (English) Zbl 1532.90055

Summary: In this study, we present a deep learning-optimization framework to tackle dynamic mixed-integer programs. Specifically, we develop a bidirectional Long Short Term Memory (LSTM) framework that can process information forward and backward in time to learn optimal solutions to sequential decision-making problems. We demonstrate our approach in predicting the optimal decisions for the single-item capacitated lot-sizing problem (CLSP), where a binary variable denotes whether to produce in a period or not. Due to the dynamic nature of the production and inventory levels that must meet the periodic demand, the CLSP can be treated as a sequence labeling task where a recurrent neural network can capture the problem’s temporal dynamics. Computational results show that our LSTM-Optimization (LSTM-Opt) framework significantly reduces the solution time of benchmark CLSP problems without much loss in feasibility and optimality. For example, the predictions at the 85% level reduce the CPLEX solution time by a factor of 9 on average for over 240000 test instances with an optimality gap of less than 0.05% and 0.4% infeasibility in the test set. Also, models trained using shorter planning horizons can successfully predict the optimal solution of the instances with longer planning horizons. For the hardest data set, the LSTM predictions at the 25% level reduce the solution time of 70 CPU hours to less than 2 CPU minutes with an optimality gap of 0.8% and without any infeasibility. The LSTM-Opt framework outperforms classical ML algorithms, such as the logistic regression and random forest, in terms of the solution quality, and exact approaches, such as the \(( \ell \), S) and dynamic programming-based inequalities, with respect to the solution time improvement. Our machine learning approach could be beneficial in tackling sequential decision-making problems similar to CLSP, which need to be solved repetitively, frequently, and in a fast manner.

MSC:

90C11 Mixed integer programming
90C39 Dynamic programming

References:

[1] Gicquel C, Minoux M, Dallery Y (2008) Capacitated lot sizing models: A literature review
[2] Karimi, B.; Ghomi, SF; Wilson, J., The capacitated lot sizing problem: a review of models and algorithms, Omega, 31, 5, 365-378 (2003) · doi:10.1016/S0305-0483(03)00059-8
[3] Bitran, GR; Yanasse, HH, Computational complexity of the capacitated lot size problem, Manag Sci, 28, 10, 1174-1186 (1982) · Zbl 0502.90046 · doi:10.1287/mnsc.28.10.1174
[4] Hartman, JC; Büyüktahtakın, İE; Smith, JC, Dynamic-programming-based inequalities for the capacitated lot-sizing problem, IIE Trans, 42, 12, 915-930 (2010) · doi:10.1080/0740817X.2010.504683
[5] Hochreiter, S.; Schmidhuber, J., Long short-term memory, Neural Comput, 9, 1735-80 (1997) · doi:10.1162/neco.1997.9.8.1735
[6] Bengio, Y.; Simard, P.; Frasconi, P., Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural Networks / a Publication of the IEEE Neural Networks Council, 5, 157-66 (1994) · doi:10.1109/72.279181
[7] Schuster, M.; Paliwal, K., Bidirectional recurrent neural networks, Signal Processing, IEEE Transactions on, 45, 2673-2681 (1997) · doi:10.1109/78.650093
[8] Graves A, Schmidhuber J (2005) Framewise phoneme classification with bidirectional LSTM networks. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol 4. pp 2047-2052
[9] Smith, KA, Neural networks for combinatorial optimization: A review of more than a decade of research, INFORMS J Comput, 11, 1, 15-34 (1999) · Zbl 1034.90528 · doi:10.1287/ijoc.11.1.15
[10] Larsen E, Lachapelle S, Bengio Y, Frejinger E, Lacoste-Julien S, Lodi A (2021) Predicting tactical solutions to operational planning problems under imperfect information. INFORMS J Comput · Zbl 07549375
[11] Fischetti, M.; Fraccaro, M., Machine learning meets mathematical optimization to predict the optimal production of offshore wind parks, Comput Oper Res, 106, 289-297 (2019) · Zbl 1458.90671 · doi:10.1016/j.cor.2018.04.006
[12] Bertsimas D, Stellato B (2019) Online mixed-integer optimization in milliseconds. arXiv preprint arXiv:1907.02206 · Zbl 07587567
[13] Bushaj S, Büyüktahtakın İE (2023) A K-means supported reinforcement learning algorithm to solve multi-dimensional knapsack problem. Under Review
[14] Bushaj S, Yin X, Beqiri A, Andrews D, Büyüktahtakın İE (2022) A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization. Ann Oper Res 1-33
[15] Yilmaz D, Büyüktahtakın İE (2023) A deep reinforcement learning framework for solving two-stage stochastic programs. Accepted for Publication in Optimization Letters
[16] Oroojlooyjadid, A.; Snyder, LV; Takáč, M., Applying deep learning to the newsvendor problem, IISE Transactions, 52, 4, 444-463 (2019) · doi:10.1080/24725854.2019.1632502
[17] Khalil EB, Bodic PL, Song L, Nemhauser G, Dilkina B (2016) Learning to branch in mixed integer programming. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, page 724-731. AAAI Press
[18] Khalil EB, Dilkina B, Nemhauser GL, Ahmed S, Shao Y (2017) Learning to run heuristics in tree search. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17 pages 659-666
[19] Lodi, A.; Zarpellon, G., On learning and branching: a survey, TOP, 25, 2, 207-236 (2017) · Zbl 1372.90003 · doi:10.1007/s11750-017-0451-6
[20] Xavier AS, Qiu F, Ahmed S (2019) Learning to solve large-scale security-constrained unit commitment problems · Zbl 07362344
[21] Kruber M, Lübbecke M, Parmentier A (2017) Learning when to use a decomposition. pages 202-210 · Zbl 1489.68253
[22] Bonami, P.; Lodi, A.; Zarpellon, G.; van Hoeve, WJ, Learning a classification of mixed-integer quadratic programming problems, Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 595-604 (2018), Cham. Springer International Publishing · Zbl 1511.90304 · doi:10.1007/978-3-319-93031-2_43
[23] Florian, M.; Lenstra, JK; Rinnooy Kan, A., Deterministic production planning: Algorithms and complexity, Manag Sci, 26, 7, 669-679 (1980) · Zbl 0445.90025 · doi:10.1287/mnsc.26.7.669
[24] Barany, I.; Van Roy, TJ; Wolsey, LA, Strong formulations for multi-item capacitated lot sizing, Manag Sci, 30, 10, 1255-1261 (1984) · Zbl 0601.90037 · doi:10.1287/mnsc.30.10.1255
[25] Eppen, GD; Martin, RK, Solving multi-item capacitated lot-sizing problems using variable redefinition, Oper Res, 35, 6, 832-848 (1987) · Zbl 0639.90046 · doi:10.1287/opre.35.6.832
[26] Büyüktahtakın, İE; Smith, JC; Hartman, JC, Partial objective inequalities for the multi-item capacitated lot-sizing problem, Comput Oper Res, 91, 132-144 (2018) · Zbl 1391.90215 · doi:10.1016/j.cor.2017.11.006
[27] Pochet Y, Wolsey LA (2006) Production planning by mixed integer programming. Springer Science & Business Media · Zbl 1102.90039
[28] Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press. http://www.deeplearningbook.org · Zbl 1373.68009
[29] Graves, A., Supervised Sequence Labelling with Recurrent Neural Networks (2012), Berlin Heidelberg: Springer, Berlin Heidelberg · Zbl 1235.68014 · doi:10.1007/978-3-642-24797-2
[30] ILOG I (2016) Cplex optimizer 12.7. 0
[31] Quadt D, Kuhn H (2007) Capacitated lot-sizing with extensions: A review. 4OR 6(1):61-83 · Zbl 1146.90391
[32] Bishop, CM, Neural networks for pattern recognition (1995), Oxford University Press
[33] Copil, K.; Wörbelauer, M.; Meyr, H.; Tempelmeier, H., Simultaneous lot-sizing and scheduling problems: a classification and review of models, OR Spectr, 39, 1, 1-64 (2017) · Zbl 1368.90065 · doi:10.1007/s00291-015-0429-4
[34] Atamtürk, A.; Muñoz, JC, A study of the lot-sizing polytope, Math Program, 99, 3, 443-465 (2004) · Zbl 1073.90067 · doi:10.1007/s10107-003-0465-8
[35] Büyüktahtakın, İE; Liu, N., Dynamic programming approximation algorithms for the capacitated lot-sizing problem, J Glob Optim, 65, 2, 231-259 (2016) · Zbl 1348.90484 · doi:10.1007/s10898-015-0349-5
[36] Bitran, GR; Haas, EA; Matsuo, H., Production planning of style goods with high setup costs and forecast revisions, Oper Res, 34, 2, 226-236 (1986) · Zbl 0606.90059 · doi:10.1287/opre.34.2.226
[37] Atamtürk, A.; Küçükyavuz, S., Lot sizing with inventory bounds and fixed costs: Polyhedral study and computation, Oper Res, 53, 4, 711-730 (2005) · Zbl 1165.90304 · doi:10.1287/opre.1050.0223
[38] Büyüktahtakın İE (2023) Scenario-dominance to multi-stage stochastic lot-sizing and knapsack problems. Comput Oper Res 106149 · Zbl 1542.90163
[39] Yilmaz D, Büyüktahtakın IE (2023) An expandable learning-optimization framework for sequentially dependent decision-making. Under Review
[40] Yilmaz D, Büyüktahtakın IE (2023) A non-anticipative learning-optimization framework for solving multi-stage stochastic programs. Under Review
[41] LeCun YA, Bottou L, Orr GB, Müller KR (2012) Efficient backprop. In Neural networks: Tricks of the trade pages 9-48. Springer
[42] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
[43] Yang, L.; Shami, A., On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing, 415, 295-316 (2020) · doi:10.1016/j.neucom.2020.07.061
[44] Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(2) · Zbl 1283.68282
[45] Bischl B, Binder M, Lang M, Pielok T, Richter J, Coors S, Thomas J, Ullmann T, Becker M, Boulesteix AL, et al (2021) Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery page e1484
[46] Yu T, Zhu H (2020) Hyper-parameter optimization: A review of algorithms and applications. arXiv preprint arXiv:2003.05689
[47] Wu, J.; Chen, XY; Zhang, H.; Xiong, LD; Lei, H.; Deng, SH, Hyperparameter optimization for machine learning models based on bayesian optimization, J Electrochem Sci Technol, 17, 1, 26-40 (2019)
[48] Lorenzo PR, Nalepa J, Kawulok M, Ramos LS, Pastor JR (2017) Particle swarm optimization for hyper-parameter selection in deep neural networks. In Proceedings of the genetic and evolutionary computation conference pages 481-488
[49] Elsken, T.; Metzen, JH; Hutter, F., Neural architecture search: A survey, J Mach Learn Res, 20, 1, 1997-2017 (2019) · Zbl 1485.68229
[50] Kantas, AB; Cobuloglu, HI; Büyüktahtakın, İE, Multi-source capacitated lot-sizing for economically viable and clean biofuel production, J Clean Prod, 94, 116-129 (2015) · doi:10.1016/j.jclepro.2015.02.001
[51] Shrouf, F.; Miragliotta, G., Energy management based on internet of things: practices and framework for adoption in production management, J Clean Prod, 100, 235-246 (2015) · doi:10.1016/j.jclepro.2015.03.055
[52] Uzsoy, R.; Lee, CY; Martin-Vega, LA, A review of production planning and scheduling models in the semiconductor industry part I: System characteristics, performance evaluation and production planning, IIE Trans, 24, 4, 47-60 (1992) · doi:10.1080/07408179208964233
[53] Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D., Do we need hundreds of classifiers to solve real world classification problems?, J Mach Learn Res, 15, 1, 3133-3181 (2014) · Zbl 1319.62005
[54] Büyüktahtakın IE (2022) Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs. Ann Oper Res 309(1):1-35. Springer · Zbl 1478.90065
[55] Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473
[56] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Proces Syst 30
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.