×

A solution method for truncated normalized max product fuzzy set of equations. (English) Zbl 1075.68658

Summary: An iterative method of solving a set of equations based on the truncated normalized max product is described. The operation may serve as the transformation for the set of fully connected units in a fully recurrent network that might otherwise consist of linear threshold units. Because of truncation and normalization the network acting under this transformation has a finite number of states and components of the state vector are bounded. Component values however are not restricted to binary values as would be the case if the network consisted of linear threshold units but can now take on the values in the set \(\{0, 0.1,..0.9, 1\}\). This means that each unit although still having discrete output can provide finer granularity compared to the case where a linear threshold unit is used. Truncation is natural in hardware implementation where only a finite number of places behind the decimal are retained.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
68T05 Learning and adaptive systems in artificial intelligence
03E72 Theory of fuzzy sets, etc.
Full Text: DOI

References:

[1] DOI: 10.1016/S0019-9958(76)90446-0 · Zbl 0326.02048 · doi:10.1016/S0019-9958(76)90446-0
[2] Zadeh L., The Concept of a Linguistic Variable and its Application to Approximate Reasoning (1973)
[3] DOI: 10.1016/S0165-0114(83)80065-7 · Zbl 0517.93001 · doi:10.1016/S0165-0114(83)80065-7
[4] DOI: 10.1016/S0165-0114(86)90043-6 · Zbl 0613.93003 · doi:10.1016/S0165-0114(86)90043-6
[5] DOI: 10.1016/S0020-7373(76)80029-6 · Zbl 0355.93022 · doi:10.1016/S0020-7373(76)80029-6
[6] E. Sanches, Fuzzy Automata and Decision Processes, eds. M. M. Gupta, G. N. Saridis and B. R. Gaines (North-Holland, Amsterdam, 1977) pp. 221–234.
[7] DOI: 10.1016/S0019-9958(65)90241-X · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[8] Tamura S., IEEE Trans. Systems Man Cybernet., 1 1 pp 61–
[9] DOI: 10.1016/0165-0114(82)90055-0 · Zbl 0506.93039 · doi:10.1016/0165-0114(82)90055-0
[10] Klir G. J., Fuzzy Sets and Fuzzy Logic: Theory and Applications (1995) · Zbl 0915.03001
[11] Di Nola A., Stochastica 8 2 pp 99–
[12] DOI: 10.1016/0165-0114(84)90015-0 · Zbl 0554.93070 · doi:10.1016/0165-0114(84)90015-0
[13] DOI: 10.1016/0022-247X(85)90329-4 · Zbl 0581.04003 · doi:10.1016/0022-247X(85)90329-4
[14] DOI: 10.1016/S0165-0114(96)00246-1 · Zbl 0923.04003 · doi:10.1016/S0165-0114(96)00246-1
[15] D. Dubois and H. Prade, Fuzzy Sets, eds. P. P. Wang and S. K. Chang (Plenum Press, New York, 1986) pp. 59–75.
[16] DOI: 10.1109/TSMC.1987.289361 · Zbl 0643.93018 · doi:10.1109/TSMC.1987.289361
[17] DOI: 10.1016/0025-5564(75)90125-X · Zbl 0295.92003 · doi:10.1016/0025-5564(75)90125-X
[18] Kosko B., Fuzzy Expert Systems (1987)
[19] Zuo S., Fuzzy Sets Syst. 26 pp 93–
[20] DOI: 10.1016/0165-0114(94)00281-B · doi:10.1016/0165-0114(94)00281-B
[21] DOI: 10.1016/0165-0114(94)00251-2 · doi:10.1016/0165-0114(94)00251-2
[22] DOI: 10.1023/A:1018663627241 · doi:10.1023/A:1018663627241
[23] DOI: 10.1162/neco.1989.1.2.201 · doi:10.1162/neco.1989.1.2.201
[24] DOI: 10.1016/0893-9659(91)90080-F · Zbl 0749.68032 · doi:10.1016/0893-9659(91)90080-F
[25] DOI: 10.1016/0893-6080(94)00102-R · doi:10.1016/0893-6080(94)00102-R
[26] DOI: 10.1016/S0893-6080(96)00087-1 · doi:10.1016/S0893-6080(96)00087-1
[27] Brouwer R. K., International Journal of Pattern Recognition and Artificial Intelligence 14
[28] Hecht-Nielsen R., Neurocomputing (1992)
[29] DOI: 10.1109/83.128030 · doi:10.1109/83.128030
[30] DOI: 10.1126/science.3755256 · doi:10.1126/science.3755256
[31] DOI: 10.1017/CBO9780511623257 · Zbl 0709.92001 · doi:10.1017/CBO9780511623257
[32] Brouwer R. K., International Journal of Neural Systems 9
[33] Brouwer R. K., International Journal of Uncertainty, Fuzziness, and Knowledge-based Systems 8
[34] DOI: 10.1109/72.80230 · doi:10.1109/72.80230
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.