×

On the \(KO_{{\mathbb{Z}}/2}\)-Euler class. I. (English) Zbl 0723.55010

Let \(\xi\) be an n-dimensional real vector bundle over a finite complex X. A necessary condition for the existence of an r-field on \(\xi\), that is, r linearly independent cross-sections, is the vanishing of the stable cohomotopy Euler class \(\gamma\) (H\(\otimes \xi)\) of the tensor product of \(\xi\) and the Hopf line bundle H over real projective space \(P({\mathbb{R}}^ r)\). The Hurewicz image in integral cohomology of the stable cohomotopy Euler class \(\gamma\) (H\(\otimes \xi)\) is the classical obstruction to the existence of an r-field.
This paper contains a study of \({\mathbb{Z}}/2\)-equivariant KO-theoretic methods in obstruction theory. In general, we are concerned with the work of M. F. Atiyah and J. L. Dupont [Acta Math. 128, 1-40 (1972; Zbl 0233.57010)]. Using the Adams operations and, specifically, the \({\mathbb{Z}}/2\)-e-invariant, the author obtains a KO-theory criterion for an n-dimensional real vector bundle to admit an r-field.

MSC:

55S91 Equivariant operations and obstructions in algebraic topology
Full Text: DOI

References:

[1] DOI: 10.1090/S0002-9947-1968-0236924-4 · doi:10.1090/S0002-9947-1968-0236924-4
[2] DOI: 10.1016/0040-9383(65)90062-5 · Zbl 0151.32301 · doi:10.1016/0040-9383(65)90062-5
[3] DOI: 10.1007/BF02392157 · Zbl 0233.57010 · doi:10.1007/BF02392157
[4] Atiyah, Vector fields on manifolds 200 (1970) · doi:10.1007/978-3-322-98503-3
[5] Atiyah, K-theory (1967)
[6] Stong, Notes on Cobordism Theory (1968)
[7] DOI: 10.1093/qmath/17.1.165 · Zbl 0144.44901 · doi:10.1093/qmath/17.1.165
[8] DOI: 10.1093/qmath/22.3.339 · Zbl 0218.57015 · doi:10.1093/qmath/22.3.339
[9] Adams, Stable homotopy and generalised homology (1974) · Zbl 0309.55016
[10] DOI: 10.5802/aif.268 · Zbl 0159.53503 · doi:10.5802/aif.268
[11] DOI: 10.1016/0040-9383(66)90004-8 · Zbl 0145.19902 · doi:10.1016/0040-9383(66)90004-8
[12] DOI: 10.1007/BFb0064691 · doi:10.1007/BFb0064691
[13] DOI: 10.2307/1970213 · Zbl 0112.38102 · doi:10.2307/1970213
[14] DOI: 10.1007/BF02684593 · Zbl 0199.26202 · doi:10.1007/BF02684593
[15] Salomonsen, Math. Scand. 32 pp 87– (1973) · Zbl 0264.57009 · doi:10.7146/math.scand.a-11447
[16] Dax, Ann. Sci. Ecole Norm. Sup. 4 pp 303– (1972) · Zbl 0251.58003 · doi:10.24033/asens.1230
[17] DOI: 10.1512/iumj.1979.28.28077 · Zbl 0399.55017 · doi:10.1512/iumj.1979.28.28077
[18] DOI: 10.1093/qmath/25.1.169 · Zbl 0286.55018 · doi:10.1093/qmath/25.1.169
[19] DOI: 10.1017/S0013091500017831 · Zbl 0614.55012 · doi:10.1017/S0013091500017831
[20] DOI: 10.1112/plms/s3-30.1.1 · Zbl 0294.57015 · doi:10.1112/plms/s3-30.1.1
[21] Crabb, Proc. Roy. Soc. Edinburgh Sect. A 107 pp 87– (1987) · Zbl 0633.55014 · doi:10.1017/S0308210500029371
[22] Crabb, Proc. Roy. Soc. Edinburgh Sect. A 117 pp 155– (1991) · Zbl 0719.57017 · doi:10.1017/S0308210500027670
[23] Crabb, Proc. Roy. Soc. Edinburgh Sect. A 117 pp 139– (1991) · Zbl 0723.55011 · doi:10.1017/S0308210500027669
[24] Crabb, \(\mathbb{Z}\)/2-Homotopy Theory (1980)
[25] DOI: 10.1016/0040-9383(65)90013-3 · Zbl 0173.25903 · doi:10.1016/0040-9383(65)90013-3
[26] Mahowald, American Mathematical Society Memoir 72 (1967)
[27] Larmore, Pacific J. Math. 41 pp 755– (1972) · Zbl 0237.55004 · doi:10.2140/pjm.1972.41.755
[28] Dieck, Transformation Groups and Representation Theory 766 (1979) · doi:10.1007/BFb0085965
[29] DOI: 10.1090/S0002-9904-1975-13685-8 · Zbl 0296.57005 · doi:10.1090/S0002-9904-1975-13685-8
[30] DOI: 10.1090/S0002-9904-1963-10930-1 · Zbl 0119.18802 · doi:10.1090/S0002-9904-1963-10930-1
[31] DOI: 10.1112/plms/s3-9.1.115 · Zbl 0089.39401 · doi:10.1112/plms/s3-9.1.115
[32] DOI: 10.2307/1970171 · Zbl 0186.27301 · doi:10.2307/1970171
[33] DOI: 10.1007/BFb0085354 · doi:10.1007/BFb0085354
[34] Atiyah, Bull. Soc. Math. France 87 pp 383– (1959) · Zbl 0196.55903 · doi:10.24033/bsmf.1533
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.