×

Efficient symplectic Runge-Kutta methods. (English) Zbl 1101.65077

The authors consider the efficiency of symplectic Runge-Kutta methods with real eigenvalues for the numerical integration of initial value problems for systems of ordinary differential equations.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
Full Text: DOI

References:

[1] Liu, H. Y.; Sun, G., Symplectic RK methods and symplectic PRK methods with real eigenvalues, J. Comput. Math., 22, 5, 769-776 (2004) · Zbl 1060.65129
[2] Sanz-Serna, J. M.; Calvo, M. P., Numerical Hamiltonian problems (1994), Chapman& Hall · Zbl 0816.65042
[3] Iserles, A., Efficient Runge-Kutta methods for Hamiltonian equations, Bull. Greek. Math. Soc., 32, 3-20 (1991) · Zbl 0798.65082
[4] Hairer, E.; Nørsett, S. P.; Wanner, G., Symplectic Runge-Kutta methods with real eigenvalues, BIT, 34, 3-20 (1994) · Zbl 0807.65081
[5] Sun, G., Construction of high order symplectic Runge-Kutta methods, J. Comput. Math., 11, 3, 250-260 (1993) · Zbl 0787.65053
[6] Wanner; Hairer; Nørsett, Order stars and stability theorems, BIT, 18, 503 (1978) · Zbl 0432.34033
[7] Hairer, E.; Wanner, G., Solving ordinary differential equations II (1991), Springer-Verlag · Zbl 0729.65051
[8] Butcher, J., The numerical analysis of ODEs: RK and general linear methods (1987), John Wiley & Sons · Zbl 0616.65072
[9] E. Hairer, G. Wanner, Characterization of non-linearly stable implicit RK Methods, in: Numerical Integration of Differential Equations, Lecture Notes in Math., vol. 968, 1982, pp. 207-219.; E. Hairer, G. Wanner, Characterization of non-linearly stable implicit RK Methods, in: Numerical Integration of Differential Equations, Lecture Notes in Math., vol. 968, 1982, pp. 207-219. · Zbl 0493.65036
[10] Lasagni, F. M., Canonical Runge-Kutta methods, ZAMP, 39, 952-953 (1988) · Zbl 0675.34010
[11] Sanz-Serna, J. M., Runge-Kutta schemes for Hamiltonian systems, BIT, 28, 877-883 (1988) · Zbl 0655.70013
[12] Suris, Y. B., The canonicity of mappings generated by Runge-Kutta type methods when integrating the systems \(\ddot{x} = - \partial U / \partial x\), Zh. Vychisl. Mat. i Mat. Fiz., 29, 202-211 (1989) · Zbl 0686.65039
[13] Chan, R. P.K., On symmetric Runge-Kutta methods of high order, Computing, 45, 301-309 (1990) · Zbl 0724.65074
[14] Hairer, E.; Lubich, Ch.; Wanner, G., Geometric numerical integration (2002), Springer-Verlag · Zbl 0994.65135
[15] McLacnlan, R. I., On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comput., 16, 151-168 (1995) · Zbl 0821.65048
[16] Suzuki, M., Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A, 146, 319-323 (1990)
[17] Yoshida, H., Construction of higher order symplectic integrators, Phys. Lett. A, 150, 262-268 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.