×

Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem. (English) Zbl 1097.15014

The authors extend a realizability criterion presented by H. Perfect [Duke Math. J. 22, 305–311 (1955; Zbl 0068.32704)] for the real nonnegative inverse eigenvalue problem. This new criterion strictly contains the realizability criterion due to R. L. Soto [Linear Algebra Appl. 369, 169–184 (2003; Zbl 1031.15018)]. Realizability criteria for the \(5\times 5\) nonnegative inverse eigenvalue problem and in the symmetric case for one of the unsolved cases of P. D. Egleston, T. D. Lenker and S. K. Narayan [Linear Algebra Appl. 379, 475–490 (2004; Zbl 1040.15009)] and illustrative examples are provided.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
15A29 Inverse problems in linear algebra
15B48 Positive matrices and their generalizations; cones of matrices
65F18 Numerical solutions to inverse eigenvalue problems
Full Text: DOI

References:

[1] Borobia, A., On the Nonnegative Eigenvalue Problem, Linear Algebra Appl., 223-224, 131-140 (1995) · Zbl 0831.15014
[2] Borobia, A.; Moro, J., On nonnegative matrices similar to positive matrices, Linear Algebra Appl., 266, 365-379 (1997) · Zbl 0887.15019
[3] Borobia, A.; Moro, J.; Soto, R., Negativity compensation in the nonnegative inverse eigenvalue problem, Linear Algebra Appl., 393, 73-89 (2004) · Zbl 1079.15503
[4] Brauer, A., Limits for the characteristic roots of a matrix IV: Applications to stochastic matrices, Duke Math. J., 19, 75-91 (1952) · Zbl 0046.01202
[5] Egleston, P.; Lenker, T.; Narayan, S., The nonnegative inverse eigenvalue problem, Linear Algebra Appl., 379, 475-490 (2004) · Zbl 1040.15009
[6] Fiedler, M., Eigenvalues of nonnegative symmetric matrices, Linear Algebra Appl., 9, 119-142 (1974) · Zbl 0322.15015
[7] Johnson, C. R., Row stochastic matrices similar to doubly stochastic matrices, Linear and Multilinear Algebra, 10, 113-130 (1981) · Zbl 0455.15019
[8] Johnson, C. R.; Laffey, T. J.; Loewy, R., The real and the symmetric nonnegative inverse eigenvalue problems are different, Proc. AMS, 124, 3647-3651 (1996) · Zbl 0861.15007
[9] Kellogg, R., Matrices similar to a positive or essentially positive matrix, Linear Algebra Appl., 4, 191-204 (1971) · Zbl 0215.37504
[10] Knudsen, C.; Mcdonald, J. J., A note on the convexity of the realizable set of eigenvalues for nonnegative symmetric matrices, Electron. J. Linear Algebra, 8, 110-114 (2001) · Zbl 0978.15009
[11] Laffey, T. J., Extreme nonnegative matrices, Linear Algebra Appl., 275-276, 349-357 (1998) · Zbl 0933.15028
[12] Laffey, T. J.; Meehan, E., A characterization of trace zero nonnegative 5×5 matrices, Linear Algebra Appl., 302-303, 295-302 (1999) · Zbl 0946.15008
[13] Laffey, T. J.; Meehan, E., A refinement of an inequality of Johnson, Loewy and London on nonnegative matrices and some applications, Electron. J. Linear Algebra, 3, 119-128 (1998) · Zbl 0907.15013
[14] Loewy, R.; London, D., A note on an inverse problem for nonnegative matrices, Linear and Multilinear Algebra, 6, 83-90 (1978) · Zbl 0376.15006
[15] Loewy, R.; Mcdonald, J. J., The symmetric nonnegative inverse eigenvalue problem for 5×5 matrices, Linear Algebra Appl., 393, 275-298 (2004) · Zbl 1066.15007
[16] Mcdonald, J. J.; Newmann, M., The Soules approach to the inverse eigenvalue problem for nonnegative symmetric matrices of order \(n\)⩽5, Contemp. Math., 259, 387-407 (2000) · Zbl 0965.15009
[17] Minc, H., Nonnegative Matrices (1988), John Wiley & Sons: John Wiley & Sons New York · Zbl 0638.15008
[18] Perfect, H., Methods of constructing certain stochastic matrices, Duke Math. J., 20, 395-404 (1953) · Zbl 0051.35701
[19] Perfect, H., Methods of constructing certain stochastic matrices II, Duke Math. J., 22, 305-311 (1955) · Zbl 0068.32704
[20] Radwan, N., An inverse eigenvalue problem for symmetric and normal matrices, Linear Algebra Appl., 248, 101-109 (1996) · Zbl 0865.15008
[21] Reams, R., An inequality for nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra, 41, 367-375 (1996) · Zbl 0887.15015
[22] Rojo, O.; Soto, R., Existence and construction of nonnegative matrices with complex spectrum, Linear Algebra Appl., 368, 53-69 (2003) · Zbl 1031.15017
[23] Rojo, O.; Rojo, H., Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices, Linear Algebra Appl., 392, 211-233 (2004) · Zbl 1063.15006
[24] Salzmann, F., A note on eigenvalues of nonnegative matrices, Linear Algebra Appl., 5, 329-338 (1972) · Zbl 0255.15009
[25] Šmigoc, H., The inverse eigenvalue problem for nonnegative matrices, Linear Algebra Appl., 393, 365-374 (2004) · Zbl 1075.15012
[26] Šmigoc, H., Construction of nonnegative matrices and the inverse eigenvalue problem, Linear and Multilinear Algebra, 53, 85-96 (2005) · Zbl 1080.15007
[27] Soto, R., Existence and construction of nonnegative matrices with prescribed spectrum, Linear Algebra Appl., 369, 169-184 (2003) · Zbl 1031.15018
[28] Soto, R.; Borobia, A.; Moro, J., On the comparison of some realizability criteria for the real nonnegative inverse eigenvalue problem, Linear Algebra Appl., 396, 207-225 (2005)
[29] Soto, R., Realizability by symmetric nonnegative matrices, Proyecciones J. Math., 24, 65-78 (2005) · Zbl 1097.15012
[30] Soules, G., Constructing symmetric nonnegative matrices, Linear and Multilinear Algebra, 13, 241-251 (1983) · Zbl 0516.15013
[31] Suleimanova, H. R., Stochastic matrices with real characteristic values, Dokl. Akad. Nauk SSSR, 66, 343-345 (1949) · Zbl 0035.20903
[32] Wuwen, G., An inverse eigenvalue problem for nonnegative matrices, Linear Algebra Appl., 249, 67-78 (1996) · Zbl 0865.15009
[33] Wuwen, G., Eigenvalues of nonnegative matrices, Linear Algebra Appl., 266, 261-270 (1997) · Zbl 0903.15003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.