×

Coherent states and Berezin quantization for non-scalar holomorphic representations. (English) Zbl 1319.22008

This paper studies the Berezin quantization map for non-scalar holomorphic representations. Let \(G\) be a quasi-Hermitian Lie group and \(K\) a compactly embedded subgroup of \(G\). Let us recall that each unitary representation of \(G\) is usually realized in a Hilbert space of vector-valued holomorphic functions. In this work, the author introduces a realization in a reproducing kernel Hilbert space. First, the author introduces the notations and some recalls about quasi-Hermitian Lie groups. Then, the coherent spaces are computed. Explicit formulas are also given. The corresponding Berezin transform is finally studied. The construction is illustrated in details in the case of the Heisenberg motion groups.

MSC:

22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
22E10 General properties and structure of complex Lie groups
32M05 Complex Lie groups, group actions on complex spaces
32M10 Homogeneous complex manifolds
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
81S10 Geometry and quantization, symplectic methods
81R30 Coherent states
Full Text: DOI

References:

[1] Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Coherent States, Wavelets and Their Generalizations, Graduate Texts in Contemporary Physics. Springer, Berlin (2000) · Zbl 1064.81069 · doi:10.1007/978-1-4612-1258-4
[2] Ali, S.T., Englis, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17(4), 391-490 (2005) · Zbl 1075.81038 · doi:10.1142/S0129055X05002376
[3] Ali, S.T., Englis, M.: Berezin-Toeplitz quantization over matrix domains. arXiv:math-ph/0602015v1 · Zbl 1390.47002
[4] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains. Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13(3-4), 165-181 (2002) · Zbl 1150.43302
[5] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function spaces, interpolation theory and related topics (Lund, 2000) pp. 151-211. de Gruyter, Berlin (2002) · Zbl 1027.32020
[6] Arnal, D., Cahen, M., Gutt, S.: Representations of compact Lie groups and quantization by deformation. Acad. R. Belg. Bull. Cl. Sc. 3e série LXXIV 45, 123-141 (1988) · Zbl 0681.58016
[7] Benson, C., Jenkins, J., Lipsmann, R.L., Ratcliff, G.: A geometric criterion for Gelfand pairs associated with the Heisenberg group. Pac. J. Math. 178(1), 1-36 (1997) · Zbl 0868.22015 · doi:10.2140/pjm.1997.178.1
[8] Benson, C., Jenkins, J., Ratcliff, G.: The orbit method and Gelfand pairs associated with nilpotent Lie groups. J. Geom. Anal. 9, 569-582 (1999) · Zbl 0998.22002 · doi:10.1007/BF02921973
[9] Berezin, F.A.: Covariant and contravariant symbols of operators. Math. USSR Izv. 6(5), 1117-1151 (1972) · Zbl 0259.47004 · doi:10.1070/IM1972v006n05ABEH001913
[10] Berezin, F.A.: Quantization. Math. USSR Izv. 8(5), 1109-1165 (1974) · Zbl 0312.53049 · doi:10.1070/IM1974v008n05ABEH002140
[11] Brif, C., Mann, A.: Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A 59(2), 971-987 (1999) · doi:10.1103/PhysRevA.59.971
[12] Cahen, B.: Weyl quantization for semidirect products. Differ. Geom. Appl. 25, 177-190 (2007) · Zbl 1117.81087 · doi:10.1016/j.difgeo.2006.08.005
[13] Cahen, B.: Berezin quantization on generalized flag manifolds. Math. Scand. 105, 66-84 (2009) · Zbl 1183.22006
[14] Cahen, B.: Stratonovich-Weyl correspondence for compact semisimple Lie groups. Rend. Circ. Mat. Palermo 59, 331-354 (2010) · Zbl 1218.22008 · doi:10.1007/s12215-010-0026-y
[15] Cahen, B.: Stratonovich-Weyl correspondence for discrete series representations. Arch. Math. (Brno) 47, 41-58 (2011) · Zbl 1240.22011
[16] Cahen, B.: Berezin quantization for holomorphic discrete series representations: the non-scalar case. Beiträge Algebra Geom. 53, 461-471 (2012) · Zbl 1257.22010 · doi:10.1007/s13366-011-0066-2
[17] Cahen, B.: Berezin transform for non-scalar holomorphic discrete series. Comment. Math. Univ. Carolin. 53(1), 1-17 (2012) · Zbl 1249.22008
[18] Cahen, B.: Berezin quantization and holomorphic representations. Rend. Sem. Mat. Univ. Padova 129, 277-297 (2013) · Zbl 1272.22007 · doi:10.4171/RSMUP/129-16
[19] Cahen, B.: Global parametrization of scalar holomorphic coadjoint orbits of a quasi-Hermitian Lie group. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 52, 35-48 (2013) · Zbl 1296.22007
[20] Cahen, B.: Stratonovich-Weyl correspondence for the Jacobi group. Commun. Math. 22, 31-48 (2014) · Zbl 1304.22005
[21] Cahen, B.: Stratonovich-Weyl correspondence via Berezin quantization. Rend. Istit. Mat. Univ. Trieste 46, 157-180 (2014) · Zbl 1322.22014
[22] Cahen, B.: Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group. Rend. Sem. Mat. Univ. Padova (2015, to appear) · Zbl 1359.22010
[23] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization. J. Geom. Phys. 7, 45-62 (1990) · Zbl 0719.53044 · doi:10.1016/0393-0440(90)90007-P
[24] Cariñena, J.F., Gracia-Bondìa, J.M., Vàrilly, J.C.: Relativistic quantum kinematics in the Moyal representation. J. Phys. A Math. Gen. 23, 901-933 (1990) · Zbl 0706.60108 · doi:10.1088/0305-4470/23/6/015
[25] Davidson, M., Òlafsson, G., Zhang, G.: Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials. J. Funct. Anal. 204, 157-195 (2003) · Zbl 1035.32014 · doi:10.1016/S0022-1236(03)00101-0
[26] Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C.: Moyal quantization with compact symmetry groups and noncommutative analysis. J. Math. Phys. 31, 2664-2671 (1990) · Zbl 0753.43002 · doi:10.1063/1.528967
[27] Folland, B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989) · Zbl 0682.43001
[28] Gazeau, J.-P.: Coherent States in Quantum Physics. Wiley-VCH Verlag, New York (2009) · doi:10.1002/9783527628285
[29] Gracia-Bondìa, J.M.: Generalized Moyal quantization on homogeneous symplectic spaces. Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), pp. 93-114, Contemp. Math., vol. 134. Amer. Math. Soc., Providence (1992) · Zbl 0788.58024
[30] Gracia-Bondìa, J.M., Vàrilly, J.C.: The Moyal representation for spin. Ann. Phys. 190, 107-148 (1989) · Zbl 0652.46028 · doi:10.1016/0003-4916(89)90262-5
[31] Kilic, S.: The Berezin symbol and multipliers on functional Hilbert spaces. Proc. Am. Math. Soc. 123(12), 3687-3691 (1995) · Zbl 0847.46010 · doi:10.1090/S0002-9939-1995-1277120-3
[32] Kirillov, A.A.: Lectures on the Orbit Method, Graduate Studies in Mathematics, vol. 64. American Mathematical Society, Providence (2004) · Zbl 1229.22003 · doi:10.1090/gsm/064
[33] Kostant, B.: Quantization and unitary representations. In: Modern Analysis and Applications. Lecture Notes in Mathematics, vol. 170, pp. 87-207. Springer, Berlin (1970) · Zbl 0223.53028
[34] Neeb, K.-H.: Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, vol. 28. Walter de Gruyter, Berlin (2000) · Zbl 0964.22004 · doi:10.1515/9783110808148
[35] Nomura, T.: Berezin transforms and group representations. J. Lie Theory 8, 433-440 (1998) · Zbl 0919.43008
[36] Ørsted, B., Zhang, G.: Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ. Math. J. 43(2), 551-583 (1994) · Zbl 0805.46053 · doi:10.1512/iumj.1994.43.43023
[37] Perelomov, A.M.: Generalized Coherent States and Their Applications. Springer, Berlin (1986) · Zbl 0605.22013 · doi:10.1007/978-3-642-61629-7
[38] Satake, I.: Algebraic Structures of Symmetric Domains. Iwanami Sho-ten. Tokyo and Princeton University Press, Princeton (1971)
[39] Stratonovich, R.L.: On distributions in representation space. Sov. Phys. JETP 4, 891-898 (1957) · Zbl 0082.19302
[40] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators. Commun. Math. Phys. 164(3), 563-597 (1994) · Zbl 0843.32019 · doi:10.1007/BF02101491
[41] Wallach, N.R.: Harmonic Analysis on Homogeneous Spaces. Marcel Dekker, New York (1973) · Zbl 0265.22022
[42] Wildberger, N.J.: On the Fourier transform of a compact semisimple Lie group. J. Aust. Math. Soc. A 56, 64-116 (1994) · Zbl 0842.22015 · doi:10.1017/S1446788700034741
[43] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces. Manuscr. Math. 97, 371-388 (1998) · Zbl 0920.22008 · doi:10.1007/s002290050109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.