×

Definable functions and stratifications in power-bounded \(T\)-convex fields. (English) Zbl 1458.14063

T-stratification for henselian valued fields of equi-characteristic zero is defined, and a sufficient condition for valued fields admitting t-stratification is provided in [I. Halupczok, Proc. London Math. Soc. 109, 1304–1362 (2014; Zbl 1382.03061)]. This paper demonstrates that \(T\)-convex fields given in [L. van den Dries et al., J. Symbolic Logic 60, 74–102 (1995; Zbl 0856.03028)] satisfy the sufficient condition when \(T\) is a power-bounded complete o-minimal theory extending the theory of real closed fields. It also demonstrates that \(T\)-convex field does not admit t-stratification when the exponentiation is definable.

MSC:

14P10 Semialgebraic sets and related spaces
03C98 Applications of model theory
03C64 Model theory of ordered structures; o-minimality

References:

[1] Bochnak, J., M. Coste, and M.-F. Roy, Real Algebraic Geometry, vol. 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer, Berlin, 1998. · Zbl 0912.14023
[2] Cluckers, R., and F. Loeser, “\(b\)-Minimality,” Journal of Mathematical Logic, vol. 7 (2007), pp. 195-227. · Zbl 1146.03021 · doi:10.1142/S0219061307000664
[3] García Ramírez, E., “Non-Archimedean stratifications of tangent cones,” Mathematical Logic Quarterly, vol. 63 (2017), pp. 299-312. · Zbl 1469.14111 · doi:10.1002/malq.201600023
[4] Halupczok, I., “Non-Archimedean Whitney stratifications,” Proceedings of the London Mathematical Society (3), vol. 109 (2014), pp. 1304-62. · Zbl 1382.03061 · doi:10.1112/plms/pdu006
[5] Halupczok, I., “Stratifications in valued fields,” pp. 288-96 in Valuation Theory in Interaction, edited by A. Campillo, F.-V. Kuhlmann, and B. Teissier, EMS Series of Congress Reports, European Mathematical Society, Zürich, 2014. · Zbl 1345.03069
[6] Halupczok, I., and Y. Yin, “Lipschitz stratifications in power-bounded \(o\)-minimal fields,” Journal of the European Mathematical Society (JEMS), vol. 20 (2018), pp. 2717-67. · Zbl 1522.03140 · doi:10.4171/JEMS/823
[7] Holly, J. E., “Canonical forms for definable subsets of algebraically closed and real closed valued fields,” Journal of Symbolic Logic, vol. 60 (1995), pp. 843-60. · Zbl 0854.12003 · doi:10.2307/2275760
[8] Knight, J. F., A. Pillay, and C. Steinhorn, “Definable sets in ordered structures, II,” Transactions of the American Mathematical Society, vol. 295 (1986), pp. 593-605. · Zbl 0662.03024 · doi:10.1090/S0002-9947-1986-0833698-1
[9] Loi, T. L., “Verdier and strict Thom stratifications in o-minimal structures,” Illinois Journal of Mathematics, vol. 42 (1998), pp. 347-56. · Zbl 0909.32008 · doi:10.1215/ijm/1256045049
[10] Macpherson, D., D. Marker, and C. Steinhorn, “Weakly o-minimal structures and real closed fields,” Transactions of the American Mathematical Society, vol. 352 (2000), pp. 5435-83. · Zbl 0982.03021 · doi:10.1090/S0002-9947-00-02633-7
[11] Miller, C., “A growth dichotomy for o-minimal expansions of ordered fields,” pp. 385-99 in Logic: From Foundations to Applications, edited by W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, Oxford Science Publications, Oxford University Press, New York, 1996. · Zbl 0887.03031
[12] Pillay, A., and C. Steinhorn, “Definable sets in ordered structures, I,” Transactions of the American Mathematical Society, vol. 295 (1986), pp. 565-92. · Zbl 0662.03023 · doi:10.1090/S0002-9947-1986-0833697-X
[13] Tyne, J. M., “\(T\)-levels and \(T\)-convexity,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2003.
[14] van den Dries, L., “\(T\)-convexity and tame extensions, II,” Journal of Symbolic Logic, vol. 62 (1997), pp. 14-34. · Zbl 0922.03055 · doi:10.2307/2275729
[15] van den Dries, L., Tame Topology and o-Minimal Structures, vol. 248 of London Mathematical Society Lecture Note Series 248, Cambridge University Press, Cambridge, 1998. · Zbl 0953.03045
[16] van den Dries, L., and A. H. Lewenberg, “\(T\)-convexity and tame extensions,” Journal of Symbolic Logic, vol. 60 (1995), pp. 74-102. · Zbl 0856.03028 · doi:10.2307/2275510
[17] Wilkie, A. J., “Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function,” Journal of the American Mathematical Society, vol. 9 (1996), pp. 1051-94. · Zbl 0892.03013 · doi:10.1090/S0894-0347-96-00216-0
[18] Yin, Y., “Generalized Euler characteristic in power-bounded \(T\)-convex valued fields,” Compositio Mathematica, vol. 153 (2017), pp. 2591-642. · Zbl 1506.03093 · doi:10.1112/S0010437X17007497
[19] Yin, Y., “Quantifier elimination and minimality conditions in algebraically closed valued fields,” preprint, arXiv:1006.1393v1 [math.LO].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.