×

Learned infinite elements. (English) Zbl 1477.65218

Summary: We study the numerical solution of scalar time-harmonic wave equations on unbounded domains which can be split into a bounded interior domain of primary interest and an exterior domain with separable geometry. To compute the solution in the interior domain, approximations to the Dirichlet-to-Neumann (DtN) map of the exterior domain have to be imposed as transparent boundary conditions on the artificial coupling boundary. Although the DtN map can be computed by separation of variables, it is a nonlocal operator with dense matrix representations, and hence computationally inefficient. Therefore, approximations of DtN maps by sparse matrices, usually involving additional degrees of freedom, have been studied intensively in the literature using a variety of approaches including different types of infinite elements, local nonreflecting boundary conditions, and perfectly matched layers. The entries of these sparse matrices are derived analytically, e.g., from transformations or asymptotic expansions of solutions to the differential equation in the exterior domain. In contrast, in this paper we propose to “learn” the matrix entries from the DtN map in its separated form by solving an optimization problem as a preprocessing step. Theoretical considerations suggest that the approximation quality of learned infinite elements improves exponentially with increasing number of infinite element degrees of freedom, which is confirmed in numerical experiments. These numerical studies also show that learned infinite elements outperform state-of-the-art methods for the Helmholtz equation. At the same time, learned infinite elements are much more flexible than traditional methods as they, e.g., work similarly well for exterior domains involving strong reflections. As the main motivating example we study the atmosphere of the Sun, which is strongly inhomogeneous and exhibits reflections at the corona.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
68T05 Learning and adaptive systems in artificial intelligence
35L05 Wave equation
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
85A20 Planetary atmospheres
85-08 Computational methods for problems pertaining to astronomy and astrophysics

References:

[1] A. D. Agaltsov, T. Hohage, and R. G. Novikov, Monochromatic identities for the Green function and uniqueness results for passive imaging, SIAM J. Appl. Math., 78 (2018), pp. 2865-2890, https://doi.org/10.1137/18M1182218. · Zbl 1409.35234
[2] S. Agarwal, K. Mierle, and Others, Ceres Solver, \newblock http://ceres-solver.org.
[3] R. J. Astley, Infinite elements for wave problems: A review of current formulations and an assessment of accuracy, Internat. J. Numer. Methods Engrg., 49 (2000), pp. 951-976, https://doi.org/10.1002/1097-0207(20001110)49:7 · Zbl 1030.76028
[4] H. Barucq, J. Chabassier, M. Duruflé, L. Gizon, and M. Leguèbe, Atmospheric radiation boundary conditions for the Helmholtz equation, ESAIM Math. Model. Numer. Anal., 52 (2018), pp. 945-964, https://doi.org/10.1051/m2an/2017059. · Zbl 1403.85001
[5] H. Barucq, F. Faucher, and H. Pham, Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 1111-1138, https://doi.org/10.1051/m2an/2019088. · Zbl 1440.85003
[6] A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33 (1980), pp. 707-725, https://doi.org/10.1002/cpa.3160330603. · Zbl 0438.35043
[7] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185-200, https://doi.org/10.1006/jcph.1994.1159. · Zbl 0814.65129
[8] P. Bettess, Infinite elements, Internat. J. Numer. Methods Engrg., 11 (1977), pp. 53-64, https://doi.org/10.1002/nme.1620110107. · Zbl 0362.65093
[9] Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2006), pp. 645-671, https://doi.org/10.1137/040610337. · Zbl 1092.65099
[10] J. Christensen-Dalsgaard, W. Däppen, S. V. Ajukov, E. R. Anderson, H. M. Antia, S. Basu, V. A. Baturin, G. Berthomieu, B. Chaboyer, S. M. Chitre, A. N. Cox, P. Demarque, J. Donatowicz, W. A. Dziembowski, M. Gabriel, D. O. Gough, D. B. Guenther, J. A. Guzik, J. W. Harvey, F. Hill, G. Houdek, C. A. Iglesias, A. G. Kosovichev, J. W. Leibacher, P. Morel, C. R. Proffitt, J. Provost, J. Reiter, E. J. Rhodes, Jr., F. J. Rogers, I. W. Roxburgh, M. J. Thompson, and R. K. Ulrich, The current state of solar modeling, Science, 272 (1996), pp. 1286-1292, https://doi.org/10.1126/science.272.5266.1286.
[11] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), pp. 2061-2090, https://doi.org/10.1137/S1064827596301406. · Zbl 0940.78011
[12] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th ed., Springer, Berlin, Heidelberg, New York, 2019, https://doi.org/10.1007/978-3-030-30351-8. · Zbl 1425.35001
[13] V. Danchenko, M. Komarov, and P. Chunaev, Extremal and approximative properties of simple partial fractions, Russian Math. (Iz. VUZ), 62 (2018), pp. 6-41, https://doi.org/10.3103/S1066369X18120022. · Zbl 1459.41015
[14] L. Demkowicz and K. Gerdes, Convergence of the infinite element methods for the Helmholtz equation in separable domains, Numer. Math., 79 (1998), pp. 11-42, https://doi.org/10.1007/s002110050330. · Zbl 0898.65067
[15] B. Engquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math., 32 (1979), pp. 314-358, https://doi.org/10.1002/cpa.3160320303. · Zbl 0387.76070
[16] D. Fournier, M. Leguèbe, C. S. Hanson, L. Gizon, H. Barucq, J. Chabassier, and M. Duruflé, Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology, A&A, 608 (2017), A109, https://doi.org/10.1051/0004-6361/201731283. · Zbl 1403.85001
[17] D. Givoli, Recent advances in the DtN FE Method, Arch. Comput. Methods Eng., 6 (1999), pp. 71-116, https://doi.org/10.1007/BF02736182.
[18] D. Givoli, High-order local non-reflecting boundary conditions: A review, Wave Motion, 39 (2004), pp. 319-326, https://doi.org/10.1016/j.wavemoti.2003.12.004. · Zbl 1163.74356
[19] D. Givoli and I. Patlashenko, Optimal local non-reflecting boundary conditions, Appl. Numer. Math., 27 (1998), pp. 367-384, https://doi.org/10.1016/S0168-9274(98)00020-8. · Zbl 0935.65115
[20] D. Givoli and I. Patlashenko, An optimal high-order non-reflecting finite element scheme for wave scattering problems, Int. J. Numer. Meth. Engng., 53 (2002), pp. 2389-2411, https://doi.org/10.1002/nme.406. · Zbl 1007.65093
[21] L. Gizon, H. Barucq, M. Duruflé, C. S. Hanson, M. Leguèbe, A. C. Birch, J. Chabassier, D. Fournier, T. Hohage, and E. Papini, Computational helioseismology in the frequency domain: Acoustic waves in axisymmetric solar models with flows, A&A, 600 (2017), A35, https://doi.org/10.1051/0004-6361/201629470.
[22] L. Gizon and A. C. Birch, Local helioseismology, Living Rev. Sol. Phys., 2 (2005), 6, https://doi.org/10.12942/lrsp-2005-6.
[23] L. Gizon, A. C. Birch, and H. C. Spruit, Local helioseismology: Three-dimensional imaging of the solar interior, Annu. Rev. Astron. Astrophys., 48 (2010), pp. 289-338, https://doi.org/10.1146/annurev-astro-082708-101722.
[24] N. A. Gumerov and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, 2005, https://doi.org/10.1016/B978-0-08-044371-3.X5000-5. · Zbl 1103.65122
[25] T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta Numer., 8 (1999), pp. 47-106, https://doi.org/10.1017/S0962492900002890. · Zbl 0940.65108
[26] T. Hohage, C. Lehrenfeld, and J. Preuss, Interactive Notebooks for Learned Infinite Elements, May 2021, https://mybinder.org/v2/git/https
[27] T. Hohage, C. Lehrenfeld, and J. Preuss, Replication Data for: Learned Infinite Elements, Göttingen Research Online/Data, 2021, https://doi.org/10.25625/XPLPRR.
[28] T. Hohage and L. Nannen, Hardy space infinite elements for scattering and resonance problems, SIAM J. Numer. Anal., 47 (2009), pp. 972-996, https://doi.org/10.1137/070708044. · Zbl 1195.65162
[29] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Appl. Math. Sci. 132, Springer-Verlag, New York, 1998, https://doi.org/10.1007/b98828. · Zbl 0908.65091
[30] F. Johansson, P. Peterson, M. Pernici, O. Certik, V. Steinberg, N. Telang, M. Taschuk, C. Van Horsen, J. Baayen, C. Smith, J. Arias de Reyna, I. Tziakos, A. Meurer, S. Krastanov, K. Allen, T. Hartmann, S. B. Kirpichev, K. Kuhlman, P. Masson, M. Kagalenko, J. Warner and M. Gaukler, mpmath (version 1.2.1): A Python Library for Arbitrary-precision Floating-point Arithmetic, February 2021, http://mpmath.org/.
[31] O. N. Kosukhin, On the approximation properties of the simplest fractions, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 4 (2001), pp. 54-59, 71. · Zbl 1022.41012
[32] P. Kowalczyk, Complex root finding algorithm based on Delaunay triangulation, ACM Trans. Math. Softw., 41 (2015), 19, https://doi.org/10.1145/2699457. · Zbl 1347.65095
[33] P. Kowalczyk, Global complex roots and poles finding algorithm based on phase analysis for propagation and radiation problems, IEEE Trans. Antennas Propag., 66 (2018), pp. 7198-7205, https://doi.org/10.1109/TAP.2018.2869213.
[34] W. Magnus and L. Kotin, The zeros of the Hankel function as a function of its order, Numer. Math., 2 (1960), p. 228-244, https://doi.org/10.1007/BF01386226. · Zbl 0095.05303
[35] D. J. Newman, Rational approximation to | x| , Michigan Math. J., 11 (1964), pp. 11-14, https://doi.org/10.1307/mmj/1028999029. · Zbl 0138.04402
[36] J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., 1 (1997), pp. 41-52, https://doi.org/10.1007/s007910050004. · Zbl 0883.68130
[37] J. Schöberl, C++ 11 Implementation of Finite Elements in NGSolve, Tech. report, ASC-2014-30, Institute for Analysis and Scientific Computing, Vienna, Austria, 2014.
[38] A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory, Springer Ser. Comput. Math. 34, 2005, Springer, Berlin, Heidelberg, https://doi.org/10.1007/b137868. · Zbl 1069.65138
[39] R. F. Ungless, Infinite Finite Element, Master’s thesis, University of British Columbia, Vancouver, BC, 1973, https://doi.org/10.14288/1.0050530.
[40] J. E. Vernazza, E. H. Avrett, and R. Loeser, Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun, Astrophys. J., 45 (1981), pp. 635-725, https://doi.org/10.1086/190731.
[41] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, 3rd ed., Colloquium Publications, American Mathematical Society, Providence, RI, 1960. · Zbl 0106.28104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.