×

Poisson random balls: self-similarity and X-ray images. (English) Zbl 1118.60044

The authors study a random field obtained by counting the number of balls containing a given point when overlapping balls are thrown at random according to a Poisson random measure. A microscopic model which yields a macroscopic self-similarity property is investigated. In order to obtain this model some power law behavior in the radius distribution and special intensities of Poisson random measures are introduced. A parameter that is supposed to contain tangible information on the structure, the local asymptotic self-similar (LASS) index, is explored. The action of an \(X\)-ray transform on the field is investigated. A relationship between the LASS behavior of the field and the LASS behavior of its \(X\)-ray transform is obtained.

MSC:

60G60 Random fields
60D05 Geometric probability and stochastic geometry
52A22 Random convex sets and integral geometry (aspects of convex geometry)
44A12 Radon transform
60G12 General second-order stochastic processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

Software:

LASS

References:

[1] Benassi, A., Cohen, S. and Istas, J. (2003). Local self-similarity and the Hausdorff dimension. C. R. Acad. Sci. Paris Ser. I 336 , 267-272. · Zbl 1023.60043 · doi:10.1016/S1631-073X(03)00015-3
[2] Benassi, A., Cohen, S. and Istas, J. (2004). On roughness indices for fractional fields. Bernoulli 10 , 357-376. · Zbl 1062.60052 · doi:10.3150/bj/1082380223
[3] Benassi, A., Jaffard, S. and Roux, D. (1997). Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 , 19-89. · Zbl 0880.60053 · doi:10.4171/RMI/217
[4] Biermé, H. (2005). Champs aléatoires: autosimilarité, anisotropie et étude directionnelle. Doctoral Thesis, University of Orléans, France. Available at http://www.math-info.univ-paris5.fr/\tiny \(\sim\)bierme/recherche/Thesehb.pdf.
[5] Biermé, H., Estrade, A. and Kaj, I. (2006). About scaling behavior of random balls models. In Proc. 6th Internat. Conf. Stereology, Spatial Statist. Stoch. Geometry, Prague , Union of Czech Mathematicians and Physicists, pp. 63-68.
[6] Bonami, A. and Estrade, A. (2003). Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9 , 215-236. · Zbl 1034.60038 · doi:10.1007/s00041-003-0012-2
[7] Cioczek-Georges, R. and Mandelbrot, B. B. (1995). A class of micropulses and antipersistent fractional Brownian motion. Stoch. Process. Appl. 60 , 1-18. · Zbl 0846.60055 · doi:10.1016/0304-4149(95)00046-1
[8] Cohen, S. and Taqqu, M. (2004). Small and large scale behavior of the Poissonized telecom process. Methodology Comput. Appl. Prob. 6 , 363-379. · Zbl 1066.60043 · doi:10.1023/B:MCAP.0000045085.17224.82
[9] Falconer, K. J. (2003). The local structure of random processes. J. London Math. Soc. 67 , 657-672. · Zbl 1054.28003 · doi:10.1112/S0024610703004186
[10] Harba, R. et al. (1994). Determination of fractal scales on trabecular bone X-ray images. Fractals 2 , 451-456. · Zbl 0900.92095
[11] Heinrich, L. and Schmidt, V. (1985). Normal convergence of multidimensional shot-noise and rates of this convergence. Adv. Appl. Prob. 17 , 709-730. JSTOR: · Zbl 0609.60036 · doi:10.2307/1427084
[12] Kaj, I., Leskelä, L., Norros, I. and Schmidt, V. (2004). Scaling limits for random fields with long-range dependence. To appear in Ann. Prob. · Zbl 1134.60027 · doi:10.1214/009117906000000700
[13] Lacaux, C. (2004). Real harmonizable multifractional Lévy motions. Ann. Inst. H. Poincaré Prob. Statist. 40 , 259-277. · Zbl 1041.60038 · doi:10.1016/j.anihpb.2003.11.001
[14] Lacaux, C. (2005). Fields with exceptional tangent fields. J. Theoret. Prob. 18 , 481-497. · Zbl 1065.60053 · doi:10.1007/s10959-005-3516-7
[15] Lévy-Véhel, J. and Peltier, R. F. (1995). Multifractional Brownian motion: definition and preliminary results. Tech. Rep. 2645, INRIA. Available at http://www.inria.fr/rrrt/rr-2645.html.
[16] Ramm, A. G. and Katsevich, A. I. (1996). The Radon Transform and Local Tomography . CRC Press, Boca Raton, FL. · Zbl 0863.44001
[17] Serra, J. (1982). Image Analysis and Mathematical Morphology . Academic Press, London. · Zbl 0565.92001
[18] Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications . John Wiley, Chichester. · Zbl 0622.60019
[19] Wicksell, S. D. (1925). The corpuscle problem: a mathematical study for a biometrical problem. Biometrika 17 , 84-99. · JFM 51.0392.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.