×

A game-theoretic model of rabies in domestic dogs with multiple voluntary preventive measures. (English) Zbl 1504.92075

Summary: Game theory is now routinely applied to quantitatively model the decision making of individuals presented with various voluntary actions that can prevent a given disease. Most models consider only a single preventive strategy and the case where multiple preventative actions are available is severely understudied. In our paper, we consider a very simple SI compartmental model of rabies in the domestic dog population. We study two choices of the dog owners: to vaccinate their dogs or to restrict the movements of unvaccinated dogs. We analyze the relatively rich patterns of Nash equilibria (NE). We show that there is always at least one NE at which the owners utilize only one form of prevention. However, there can be up to three different NEs at the same time: two NEs at which the owners use exclusively only the vaccination or movement restriction, and the third NE when the owners use both forms of prevention simultaneously. However, we also show that, unlike the first two types of NEs, the third kind of NE is not convergent stable.

MSC:

92C60 Medical epidemiology
91A80 Applications of game theory
Full Text: DOI

References:

[1] Acosta-Alonzo, CB; Erovenko, IV; Lancaster, A.; Oh, H.; Rychtář, J.; Taylor, D., High endemic levels of typhoid fever in rural areas of Ghana may stem from optimal voluntary vaccination behaviour, Proc R Soc A, 476, 2241, 20200354 (2020) · Zbl 1472.92192 · doi:10.1098/rspa.2020.0354
[2] Agusto, FB; Erovenko, IV; Fulk, A.; Abu-Saymeh, Q.; Romero-Alvarez, D.; Ponce, J.; Sindi, S.; Ortega, O.; Saint Onge, JM; Peterson, AT, To isolate or not to isolate: The impact of changing behavior on COVID-19 transmission, BMC Public Health, 22, 1, 1-20 (2022) · doi:10.1186/s12889-021-12275-6
[3] Angina, J.; Bachhu, A.; Talati, E.; Talati, R.; Rychtář, J.; Taylor, D., Game-theoretical model of the voluntary use of insect repellents to prevent Zika fever, Dyn Games Appl, 12, 133-146 (2022) · Zbl 1489.92136 · doi:10.1007/s13235-021-00418-8
[4] Arino, J.; Milliken, E., Bistability in deterministic and stochastic sliar-type models with imperfect and waning vaccine protection, J Math Biol, 84, 7, 1-31 (2022) · Zbl 1496.92041 · doi:10.1007/s00285-022-01765-9
[5] Bauch, CT; Earn, DJ, Vaccination and the theory of games, Proc Natl Acad Sci, 101, 36, 13391-13394 (2004) · Zbl 1064.91029 · doi:10.1073/pnas.0403823101
[6] Bauch, CT; Galvani, AP; Earn, DJ, Group interest versus self-interest in smallpox vaccination policy, Proc Natl Acad Sci, 100, 18, 10564-10567 (2003) · Zbl 1065.92038 · doi:10.1073/pnas.1731324100
[7] Beatty, AL; Peyser, ND; Butcher, XE; Cocohoba, JM; Lin, F.; Olgin, JE; Pletcher, MJ; Marcus, GM, Analysis of COVID-19 vaccine type and adverse effects following vaccination, JAMA Netw Open, 4, 12, e2140364-e2140364 (2021) · doi:10.1001/jamanetworkopen.2021.40364
[8] Bolzoni, L.; Tessoni, V.; Groppi, M.; De Leo, GA, React or wait: which optimal culling strategy to control infectious diseases in wildlife, J Math Biol, 69, 4, 1001-1025 (2014) · Zbl 1301.49046 · doi:10.1007/s00285-013-0726-y
[9] Brettin, A.; Rossi-Goldthorpe, R.; Weishaar, K.; Erovenko, IV, Ebola could be eradicated through voluntary vaccination, Roy Soc Open Sci, 5, 1 (2018) · doi:10.1098/rsos.171591
[10] Broom, M.; Rychtář, J.; Spears-Gill, T., The game-theoretical model of using insecticide-treated bed-nets to fight malaria, Appl Math, 7, 9, 852-860 (2016) · doi:10.4236/am.2016.79076
[11] Buonomo, B.; Manfredi, P.; d’Onofrio, A., Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases, J Math Biol, 78, 4, 1089-1113 (2019) · Zbl 1409.92145 · doi:10.1007/s00285-018-1303-1
[12] Chang, SL; Piraveenan, M.; Pattison, P.; Prokopenko, M., Game theoretic modelling of infectious disease dynamics and intervention methods: a review, J Biol Dyn, 14, 1, 57-89 (2020) · Zbl 1447.92405 · doi:10.1080/17513758.2020.1720322
[13] Cheng, E.; Gambhirrao, N.; Patel, R.; Zhowandai, A.; Rychtář, J.; Taylor, D., A game-theoretical analysis of Poliomyelitis vaccination, J Theor Biol, 499 (2020) · Zbl 1455.92083 · doi:10.1016/j.jtbi.2020.110298
[14] Choi, W.; Shim, E., Optimal strategies for vaccination and social distancing in a game-theoretic epidemiologic model, J Theor Biol, 505 (2020) · Zbl 1455.92084 · doi:10.1016/j.jtbi.2020.110422
[15] Chouhan, A.; Maiwand, S.; Ngo, M.; Putalapattu, V.; Rychtář, J.; Taylor, D., Game-theoretical model of retroactive hepatitis B vaccination in China, Bull Math Biol, 82, 6, 1-18 (2020) · Zbl 1453.92186 · doi:10.1007/s11538-020-00748-5
[16] Ciccarese G, Drago F, Boldrin S, Pattaro M, Parodi A (2022) Sudden onset of vitiligo after COVID-19 vaccine. Dermatol Therapy
[17] Dorsett, C.; Oh, H.; Paulemond, ML; Rychtář, J., Optimal repellent usage to combat dengue fever, Bull Math Biol, 78, 5, 916-922 (2016) · Zbl 1348.92150 · doi:10.1007/s11538-016-0167-z
[18] Doutor P, Rodrigues P, Soares MdC, Chalub FA (2016) Optimal vaccination strategies and rational behaviour in seasonal epidemics. J Math Biol 73(6):1437-1465 · Zbl 1350.92050
[19] Fortunato, AK; Glasser, CP; Watson, JA; Lu, Y.; Rychtář, J.; Taylor, D., Mathematical modelling of the use of insecticide-treated nets for elimination of visceral leishmaniasis in Bihar, India, R Soc Open Sci, 8, 6 (2021) · doi:10.1098/rsos.201960
[20] Geoffard, P-Y; Philipson, T., Disease eradication: private versus public vaccination, Am Econ Rev, 87, 1, 222-230 (1997)
[21] Hampson, K.; Dushoff, J.; Bingham, J.; Brückner, G.; Ali, Y.; Dobson, A., Synchronous cycles of domestic dog rabies in sub-Saharan Africa and the impact of control efforts, Proc Natl Acad Sci, 104, 18, 7717-7722 (2007) · doi:10.1073/pnas.0609122104
[22] Han, CY; Issa, H.; Rychtář, J.; Taylor, D.; Umana, N., A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease, PLoS Negl Trop Dis, 14, 11 (2020) · doi:10.1371/journal.pntd.0008833
[23] Kasempimolporn, S.; Sichanasai, B.; Saengseesom, W.; Puempumpanich, S.; Chatraporn, S.; Sitprija, V., Prevalence of rabies virus infection and rabies antibody in stray dogs: a survey in Bangkok, Thailand, Prevent Vet Med, 78, 3-4, 325-332 (2007) · doi:10.1016/j.prevetmed.2006.11.003
[24] Klein, SRM; Foster, AO; Feagins, DA; Rowell, JT; Erovenko, IV, Optimal voluntary and mandatory insect repellent usage and emigration strategies to control the chikungunya outbreak on Reunion Island, PeerJ, 8 (2020) · doi:10.7717/peerj.10151
[25] Kobe, J.; Pritchard, N.; Short, Z.; Erovenko, IV; Rychtář, J.; Rowell, JT, A game-theoretic model of cholera with optimal personal protection strategies, Bull Math Biol, 80, 10, 2580-2599 (2018) · Zbl 1400.92506 · doi:10.1007/s11538-018-0476-5
[26] Layan, M.; Dellicour, S.; Baele, G.; Cauchemez, S.; Bourhy, H., Mathematical modelling and phylodynamics for the study of dog rabies dynamics and control: a scoping review, PLoS Negl Trop Dis, 15, 5 (2021) · doi:10.1371/journal.pntd.0009449
[27] Liu, J.; Kochin, BF; Tekle, YI; Galvani, AP, Epidemiological game-theory dynamics of chickenpox vaccination in the USA and Israel, J R Soc Interface, 9, 66, 68-76 (2012) · doi:10.1098/rsif.2011.0001
[28] Lu, W-G; Ai, D.; Song, H.; Xie, Y.; Liu, S.; Zhu, W.; Yang, J., Epidemiological and numerical simulation of rabies spreading from canines to various human populations in mainland China, PLoS Negl Trop Dis, 15, 7 (2021) · doi:10.1371/journal.pntd.0009527
[29] Magori, K.; Park, AW, The evolutionary consequences of alternative types of imperfect vaccines, J Math Biol, 68, 4, 969-987 (2014) · Zbl 1291.92100 · doi:10.1007/s00285-013-0654-x
[30] Molina, C.; Earn, DJ, Game theory of pre-emptive vaccination before bioterrorism or accidental release of smallpox, J R Soc Interface, 12, 107, 20141387 (2015) · doi:10.1098/rsif.2014.1387
[31] Neilan, RM; Lenhart, S., Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons, J Math Anal Appl, 378, 2, 603-619 (2011) · Zbl 1208.92070 · doi:10.1016/j.jmaa.2010.12.035
[32] Piraveenan, M.; Sawleshwarkar, S.; Walsh, M.; Zablotska, I.; Bhattacharyya, S.; Farooqui, HH; Bhatnagar, T.; Karan, A.; Murhekar, M.; Zodpey, S., Optimal governance and implementation of vaccination programmes to contain the COVID-19 pandemic, R Soc Open Sci, 8, 6 (2021) · doi:10.1098/rsos.210429
[33] Reluga, TC; Galvani, AP, A general approach for population games with application to vaccination, Math Biosci, 230, 2, 67-78 (2011) · Zbl 1211.92049 · doi:10.1016/j.mbs.2011.01.003
[34] Reluga, TC; Li, J., Games of age-dependent prevention of chronic infections by social distancing, J Math Biol, 66, 7, 1527-1553 (2013) · Zbl 1267.91013 · doi:10.1007/s00285-012-0543-8
[35] Riad, A.; Pokorná, A.; Attia, S.; Klugarová, J.; Koščík, M.; Klugar, M., Prevalence of COVID-19 vaccine side effects among healthcare workers in the Czech Republic, J Clin Med, 10, 7, 1428 (2021) · doi:10.3390/jcm10071428
[36] Scheckelhoff, K.; Ejaz, A.; Erovenko, IV; Rychtář, J.; Taylor, D., Optimal voluntary vaccination of adults and adolescents can help eradicate hepatitis B in China, Games, 12, 4, 82 (2021) · Zbl 1484.92062 · doi:10.3390/g12040082
[37] Schecter, S., Geometric singular perturbation theory analysis of an epidemic model with spontaneous human behavioral change, J Math Biol, 82, 6, 1-26 (2021) · Zbl 1462.92051 · doi:10.1007/s00285-021-01605-2
[38] Shim, E.; Chapman, GB; Townsend, JP; Galvani, AP, The influence of altruism on influenza vaccination decisions, J R Soc Interface, 9, 74, 2234-2243 (2012) · doi:10.1098/rsif.2012.0115
[39] Shim, E.; Grefenstette, JJ; Albert, SM; Cakouros, BE; Burke, DS, A game dynamic model for vaccine skeptics and vaccine believers: measles as an example, J Theor Biol, 295, 194-203 (2012) · Zbl 1336.92087 · doi:10.1016/j.jtbi.2011.11.005
[40] Tepsumethanon, V.; Sitprija, V., Laboratory diagnosis of rabies in Bangkok and the central part of Thailand, 2001-2004, J Med Assoc Thai, 88, 2, 282 (2005)
[41] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[42] Verelst, F.; Willem, L.; Beutels, P., Behavioural change models for infectious disease transmission: a systematic review (2010-2015), J R Soc Interface, 13, 125, 20160820 (2016) · doi:10.1098/rsif.2016.0820
[43] Wang Z, Bauch CT, Bhattacharyya S, d’Onofrio A, Manfredi P, Perc M, Perra N, Salathé M, Zhao D (2016) Statistical physics of vaccination. Phys Rep 664:1-113 · Zbl 1359.92111
[44] Wu, B.; Fu, F.; Wang, L., Imperfect vaccine aggravates the long-standing dilemma of voluntary vaccination, PLoS ONE, 6, 6 (2011) · doi:10.1371/journal.pone.0020577
[45] Xin, Y.; Gerberry, D.; Just, W., Open-minded imitation can achieve near-optimal vaccination coverage, J Math Biol, 79, 4, 1491-1514 (2019) · Zbl 1426.92045 · doi:10.1007/s00285-019-01401-z
[46] Zhang, J.; Jin, Z.; Sun, G-Q; Zhou, T.; Ruan, S., Analysis of rabies in China: transmission dynamics and control, PLoS ONE, 6, 7 (2011) · doi:10.1371/journal.pone.0020891
[47] Zinsstag, J.; Dürr, S.; Penny, M.; Mindekem, R.; Roth, F.; Gonzalez, SM; Naissengar, S.; Hattendorf, J., Transmission dynamics and economics of rabies control in dogs and humans in an African city, Proc Natl Acad Sci, 106, 35, 14996-15001 (2009) · doi:10.1073/pnas.0904740106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.