×

Analysis and numerical effects of time-delayed rabies epidemic model with diffusion. (English) Zbl 07773896

Summary: The current work is devoted to investigating the disease dynamics and numerical modeling for the delay diffusion infectious rabies model. To this end, a non-linear diffusive rabies model with delay count is considered. Parameters involved in the model are also described. Equilibrium points of the model are determined and their role in studying the disease dynamics is identified. The basic reproduction number is also studied. Before going towards the numerical technique, the definite existence of the solution is ensured with the help of the Schauder fixed point theorem. A standard result for the uniqueness of the solution is also established. Mapping properties and relative compactness of the operator are studied. The proposed finite difference method is introduced by applying the rules defined by R. E. Mickens [Nonstandard finite difference models of differential equations. Singapore: World Scientific (1994; Zbl 0810.65083)]. Stability analysis of the proposed method is done by implementing the Von-Neumann method. Taylor’s expansion approach is enforced to examine the consistency of the said method. All the important facts of the proposed numerical device are investigated by presenting the appropriate numerical test example and computer simulations. The effect of \(\tau\) on infected individuals is also examined, graphically. Moreover, a fruitful conclusion of the study is submitted.

MSC:

92-XX Biology and other natural sciences
74-XX Mechanics of deformable solids

Citations:

Zbl 0810.65083
Full Text: DOI

References:

[1] A. R. Fooks, A. C. Banyard, D. L. Horton, N. Johnson, L. M. Mc Elhinney, and A. C. Jackson, “Current status of rabies and prospects for elimination,” Lancet, vol. 384, pp. 1389-1399, 2014. doi:10.1016/s0140-6736(13)62707-5. · doi:10.1016/s0140-6736(13)62707-5
[2] Centers for Disease Control and Prevention (CDC), Rabies, 2011. Available at: http://www.cdc.gov/rabies/ [accessed: October 5, 2016].
[3] D. Stewart, Rabies, 2021, Available at: https://www.who.int/news-room/fact-sheets/detail/rabies.
[4] A. C. Jackson and H. W. William, Rabies, 2nd ed. London, UK, Elsevier, 2007, Copyright 2002.
[5] R. Singh, k. P. Singh, M. Saminathan, S. Vineetha, R. G. B. Manjunatha, M. Maity, S. Cherian, and K. Dhama, “Rabies, a vaccine preventable disease: current status, epidemiology, pathogenesis, prevention and control with special reference to India,” J. Exp. Biol. Agric. Sci., vol. 6, no. 1, pp. 62-86, 2018. doi:10.18006/2018.6(1).62.86. · doi:10.18006/2018.6(1).62.86
[6] E. G. Hudson, V. J. Brookes, S. Dürr, and M. P. Ward, “Modelling targeted rabies vaccination strategies for a domestic dog population with heterogeneous roaming patterns,” PLoS Neglected Trop. Dis., vol. 13, no. 7, 2019, Art no. e0007582. doi:10.1371/journal.pntd.0007582. · doi:10.1371/journal.pntd.0007582
[7] J. Zhang, Z. Jin, G. Q. Sun, X. D. Sun, and S. Ruan, “Modeling seasonal rabies epidemics in China,” Bull. Math. Biol., vol. 74, pp. 1226-1251, 2012. doi:10.1007/s11538-012-9720-6. · Zbl 1237.92056 · doi:10.1007/s11538-012-9720-6
[8] M. Z. Ndii, Z. Amarti, E. D. Wiraningsih, and A. K. Supriatna, “Rabies epidemic model with uncertainty in parameters: crisp and fuzzy approaches,” IOP Conf. Ser. Mater. Sci. Eng., vol. 332, p. 012031, 2018. doi:10.1088/1757-899x/332/1/012031. · doi:10.1088/1757-899x/332/1/012031
[9] V. Tricou, J. Bouscaillou, E. K. Mebourou, F. D. Koyanongo, E. Nakoune, and M. Kazanji, “Surveillance of canine rabies in the Central African Republic: impact on human health and molecular epidemiology,” PLoS Neglected Trop. Dis., vol. 10, no. 2, 2016, Art no. e0004433. doi:10.1371/journal.pntd.0004433. · doi:10.1371/journal.pntd.0004433
[10] A. Mahadevan, M. S. Suja, R. S. Mani, and S. K. Shankar, “Perspectives in diagnosis and treatment of rabies viral encephalitis: insights from pathogenesis,” Neurotherapeutics, vol. 13, pp. 477-492, 2016. doi:10.1007/s13311-016-0452-4. · doi:10.1007/s13311-016-0452-4
[11] M. A. MacGibeny, O. O. Koyuncu, C. Wirblich, M. J. Schnell, and L. W. Enquist, “Retrograde axonal transport of rabies virus is unaffected by interferon treatment but blocked by emetine locally in axons,” PLoS Pathog., vol. 14, no. 7, 2018, Art no. e1007188. doi:10.1371/journal.ppat.1007188. · doi:10.1371/journal.ppat.1007188
[12] J. P. Gillet, P. Derer, and H. Tsiang, “Axonal transport of rabies virus in the central nervous system of the rat,” J. Neuropathol. Exp. Neurol., vol. 45, no. 6, pp. 619-634, 1986. doi:10.1097/00005072-198611000-00002. · doi:10.1097/00005072-198611000-00002
[13] N. Salahuddin, M. A. Gohar, and N. Baig-Ansari, “Reducing cost of rabies post exposure prophylaxis: experience of a tertiary care hospital in Pakistan,” PLoS Neglected Trop. Dis., vol. 10, no. 2, Art no. e0004448. doi:10.1371/journal.pntd.0004448. · doi:10.1371/journal.pntd.0004448
[14] S. N. Madhusudana and S. M. Sukumaran, “Antemortem diagnosis and prevention of human rabies,” Ann. Indian Acad. Neurol., vol. 11, no. 1, pp. 3-12, 2008. doi:10.4103/0972-2327.40219. · doi:10.4103/0972-2327.40219
[15] E. De-Francesco, G. B. da-Silva, M. Thomaz, F. A. de-Sousa, T. Magalhães, and R. M. do-Socorro-Vidal, “Renal involvenent in human rabies: clinical manifestations and autopsy findings of nine cases from northeast of Brazil,” Rev. Inst. Med. Trop. S. Paulo, vol. 47, no. 6, pp. 315-320, 2005.
[16] T. P. Scott and L. H. Nel, “Subversion of the immune response by rabies virus,” Viruses, vol. 8, no. 8, p. 231, 2016. doi:10.3390/v8080231. · doi:10.3390/v8080231
[17] ‘Y. Iwasaki and M. Tobita, “8 - pathology,” in Rabies, A. C. Jackson and W. H. Wunner, Eds., San Diego, USA, Academic Press, 2003, pp. 283-306.
[18] S. Miao, T. Qing, R. Simon, T. X. Yan, S. X. Xin, and L. G. Dong, “Factors influencing the number of rabies cases in children in China,” Biomed. Environ. Sci., vol. 27, no. 8, pp. 627-632, 2014.
[19] H. Tian, Y. Feng, B. Vrancken, B. Cazelles, H. Tan, M. S. Gill, et al.., “Transmission dynamics of re-emerging rabies in domestic dogs of rural China,” PLoS Pathog., vol. 14, no. 12, 2018, Art no. e1007392. doi:10.1371/journal.ppat.1007392. · doi:10.1371/journal.ppat.1007392
[20] A. Simon, O. Tardy, A. Hurford, N. Lecomte, D. Bélanger, and P. Leighton, “Dynamics and persistence of rabies in the Arctic,” Polar Res., vol. 38, 2019. doi:10.33265/polar.v38.3366. · doi:10.33265/polar.v38.3366
[21] M. Ruzhansky and N. Yessirkegenov, “Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups,” J. Differ. Equ., vol. 308, pp. 455-473, 2022. doi:10.1016/j.jde.2021.10.058. · Zbl 1479.35148 · doi:10.1016/j.jde.2021.10.058
[22] N. Chikami, M. Ikeda, and K. Taniguchi, “Well-posedness and global dynamics for the critical Hardy-Sobolev parabolic equation,” Nonlinearity, vol. 34, p. 8094, 2021. doi:10.1088/1361-6544/ac2c90. · doi:10.1088/1361-6544/ac2c90
[23] A. Elsonbaty, S. Zulqurnain, R. Rajagopalan, and A. Waleed, “Dynamical analysis of a novel discrete fractional sitrs model for covid-19,” Fractals, p. 2140035, 2021. doi:10.1142/s0218348x21400351. · Zbl 1500.92106 · doi:10.1142/s0218348x21400351
[24] N. Ahmed, M. Rafiq, W. Adel, H. Rezazadeh, I. Khan, and K. S. Nisar, “Structure preserving numerical analysis of HIV and CD4+ T-cells reaction diffusion model in two space dimensions,” Chaos, Solit. Fractals, vol. 139, p. 110307, 2020. doi:10.1016/j.chaos.2020.110307. · Zbl 1490.92002 · doi:10.1016/j.chaos.2020.110307
[25] W. Wu and Z. Teng, “Traveling waves in nonlocal dispersal SIR epidemic model with nonlinear incidence and distributed latent delay,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1-26, 2020. doi:10.1186/s13662-020-03073-2. · Zbl 1486.92298 · doi:10.1186/s13662-020-03073-2
[26] M. Asif, Z. A. Khan, N. Haider, and Q. Al-Mdallal, “Numerical simulation for solution of SEIR models by meshless and finite difference methods,” Chaos, Solit. Fractals, vol. 141, p. 110340, 2020. doi:10.1016/j.chaos.2020.110340. · Zbl 1496.92006 · doi:10.1016/j.chaos.2020.110340
[27] S. Abdulmajid and A. S. Hassan, “Analysis of time delayed Rabies model in human and dog populations with controls,” Afrika Matematika, 2021, vol. 32, pp. 1-19. doi:10.1007/s13370-021-00882-w. · Zbl 1499.92085 · doi:10.1007/s13370-021-00882-w
[28] J. E. Macías-Díaz and A. Puri, “A numerical method with properties of consistency in the energy domain for a class of dissipative nonlinear wave equations with applications to a Dirichlet boundary-value problem,” ZAMM-J. Appl. Math. Mech., vol. 88, no. 10, pp. 828-846, 2008. doi:10.1002/zamm.200700172. · Zbl 1153.65085 · doi:10.1002/zamm.200700172
[29] J. E. Macías-Díaz, I. E. Medina-Ramírez, and A. Puri, “Numerical treatment of the spherically symmetric solutions of a generalized Fisher-Kolmogorov-Petrovsky-Piscounov equation,” J. Comput. Appl. Math., vol. 231, no. 2, pp. 851-868, 2009. doi:10.1016/j.cam.2009.05.008. · Zbl 1169.65103 · doi:10.1016/j.cam.2009.05.008
[30] J. E. Macías-Díaz and A. Szafrańska, “Existence and uniqueness of monotone and bounded solutions for a finite-difference discretization à la Mickens of the generalized Burgers-Huxley equation,” J. Differ. Equ. Appl., vol. 20, no. 7, pp. 989-1004, 2014. doi:10.1080/10236198.2013.877457. · Zbl 1291.65368 · doi:10.1080/10236198.2013.877457
[31] J. E. Macías-Díaz and I. E. Medina-Ramírez, “An implicit four-step computational method in the study on the effects of damping in a modified ?-Fermi-Pasta-Ulam medium,” Commun. Nonlinear Sci. Numer. Simulat., vol. 14, no. 7, pp. 3200-3212, 2009. doi:10.1016/j.cnsns.2008.12.013. · Zbl 1221.82094 · doi:10.1016/j.cnsns.2008.12.013
[32] M. D. Morales-Hernández, I. E. Medina-Ramírez, F. J. Avelar-González, and J. E. Macías-Díaz, “An efficient recursive algorithm in the computational simulation of the bounded growth of biological films,” Int. J. Comput. Methods, vol. 9, no. 04, p. 1250050, 2012. doi:10.1142/s0219876212500508. · Zbl 1359.76207 · doi:10.1142/s0219876212500508
[33] A. Kaddar, A. Abta, and H. T. Alaoui, “A comparison of delayed SIR and SEIR epidemic models,” Nonlinear Anal. Model Control, vol. 16, no. 2, pp. 181-190, 2011. doi:10.15388/na.16.2.14104. · Zbl 1322.92073 · doi:10.15388/na.16.2.14104
[34] S. Chinviyasit and W. Chinviyasit, “Numerical modeling of an SIR epidemic model with diffusion,” J. Appl. Math. Comput., vol. 216, pp. 395-409, 2010. · Zbl 1184.92028
[35] R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations, London, World Scientific, 1994. · Zbl 0810.65083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.