×

Harnack’s inequality for a nonlinear eigenvalue problem on metric spaces. (English) Zbl 1160.35406

Summary: We prove Harnack’s inequality for first eigenfunctions of the \(p\)-Laplacian in metric measure spaces. The proof is based on the famous Moser iteration method, which has the advantage that it only requires a weak (\(1,p\))-Poincaré inequality. As a by-product we obtain the continuity and the fact that first eigenfunctions do not change signs in bounded domains.

MSC:

35J60 Nonlinear elliptic equations
35B45 A priori estimates in context of PDEs
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
Full Text: DOI

References:

[1] A. Björn, J. Björn, Boundary regularity for \(p\); A. Björn, J. Björn, Boundary regularity for \(p\)
[2] Björn, J., Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math., 46, 383-403 (2002) · Zbl 1026.49029
[3] Cheeger, J., Differentiability of Lipschitz functions on metric spaces, Geom. Funct. Anal., 9, 428-517 (1999) · Zbl 0942.58018
[4] De Giorgi, E., Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat., 3, 25-43 (1957) · Zbl 0084.31901
[5] Fan, X.; Zhang, Q.; Zhao, D., Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302, 306-317 (2005) · Zbl 1072.35138
[6] Fuglede, B., Extremal length and functional completion, Acta Math., 98, 171-218 (1957) · Zbl 0079.27703
[7] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems (1983), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0516.49003
[8] Giaquinta, M., Introduction to Regularity Theory for Nonlinear Elliptic Systems (1993), Birkhäuser: Birkhäuser Zurich · Zbl 0786.35001
[9] Giusti, E., Direct Methods in the Calculus of Variations (2003), World Scientific: World Scientific Singapore · Zbl 1028.49001
[10] Hajłasz, P.; Koskela, P., Sobolev meets Poincaré, C. R. Acad. Sci. Paris, 320, 1211-1215 (1995) · Zbl 0837.46024
[11] Hajłasz, P.; Koskela, P., Sobolev met Poincaré, Mem. Amer. Math. Soc., 145 (2000) · Zbl 0954.46022
[12] Heinonen, J.; Kilpeläinen, T.; Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations (1993), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0780.31001
[13] Heinonen, J., Lectures on Analysis on Metric Spaces (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0985.46008
[14] Heinonen, J.; Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1-61 (1998) · Zbl 0915.30018
[15] S. Keith, X. Zhong, The Poincaré inequality is an open ended condition, preprint, Jyväskylä, 2003; S. Keith, X. Zhong, The Poincaré inequality is an open ended condition, preprint, Jyväskylä, 2003
[16] Kilpeläinen, T.; Kinnunen, J.; Martio, O., Sobolev spaces with zero boundary values on metric spaces, Potential Anal., 12, 233-247 (2000) · Zbl 0962.46021
[17] Kinnunen, J.; Shanmugalingam, N., Regularity of quasi-minimizers on metric spaces, Manuscripta Math., 105, 401-423 (2001) · Zbl 1006.49027
[18] Kinnunen, J.; Martio, O., The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math., 21, 367-382 (1996) · Zbl 0859.46023
[19] Kinnunen, J.; Martio, O., Nonlinear potential theory on metric spaces, Illinois Math. J., 46, 857-883 (2002) · Zbl 1030.46040
[20] Kinnunen, J.; Martio, O., Sobolev space properties of superharmonic functions on metric spaces, Results Math., 44, 114-129 (2003) · Zbl 1042.31005
[21] Koskela, P.; MacManus, P., Quasiconformal mappings and Sobolev spaces, Studia Math., 131, 1-17 (1998) · Zbl 0918.30011
[22] Ladyzhenskaya, O.; Ural’tseva, N., Linear and Quasilinear Elliptic Equations (1968), Academic Press: Academic Press New York · Zbl 0164.13002
[23] Lieb, E. H., On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74, 441-448 (1983) · Zbl 0538.35058
[24] Lindqvist, P., On the equation \(div(| \nabla u |^{p - 2} \nabla u) + \lambda | u |^{p - 2} = 0\), Proc. Amer. Math. Soc., 109, 157-164 (1990) · Zbl 0714.35029
[25] Lindqvist, P., On a nonlinear eigenvalue problem, (Kilpeläinen, T., Fall School Analysis, Jyväskylä, 1994, Bericht, 68 (1995), Universität Jyväskylä, Mathematisches Institut) · Zbl 0838.35094
[26] N. Marola, Moser’s method for minimizers on metric measure spaces, preprint (A478), Helsinki University of Technology, Institute of Mathematics, 2004; N. Marola, Moser’s method for minimizers on metric measure spaces, preprint (A478), Helsinki University of Technology, Institute of Mathematics, 2004
[27] Moser, J., A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13, 457-468 (1960) · Zbl 0111.09301
[28] Moser, J., On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math., 14, 577-591 (1961) · Zbl 0111.09302
[29] M. Pere, The eigenvalue problem of the \(p\); M. Pere, The eigenvalue problem of the \(p\) · Zbl 1111.35029
[30] Serrin, J., Local behavior of solutions of quasi-linear equations, Acta Math., 111, 247-302 (1964) · Zbl 0128.09101
[31] Shanmugalingam, N., Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16, 243-279 (2000) · Zbl 0974.46038
[32] Shanmugalingam, N., Harmonic functions on metric spaces, Illinois J. Math., 45, 1021-1050 (2001) · Zbl 0989.31003
[33] de Thelin, F., Quelques résultats d’existence et de nonexistence pour une E.D.P. elliptique non linéaire, C. R. Acad. Sci. Paris Sér. I, 299, 911-914 (1984) · Zbl 0575.35030
[34] Väisälä, J., Lectures on \(n\)-Dimensional Quasiconformal Mapping, Lecture Notes in Math., vol. 229 (1971), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 0221.30031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.