×

The Coulomb branch of 3d \({\mathcal{N}= 4}\) theories. (English) Zbl 1379.81072

This extensive, very comprehensive and well-written article discusses properties of the Coulomb branch of three dimensional gauge theories with eight supercharges, \(\mathcal{N}=4\) supersymmetry. The Coulomb branch is the moduli space of supersymmetric vacua parametrized by vacuum expectation values (vevs) of a triplet of scalar fields. The key strategy is an “abelianization map” that embeds the Poisson algebra of holomorphic functions on the Coulomb branch into a larger algebra. It maps the vev of a monopole operator of the full theory to a linear combination of abelian monopole operators in the low-energy abelian gauge theory.
The article first gives a good introduction to the generalities of three dimensional \(\mathcal{N}=4\) theories and an subsequently the abelian Coulomb branches in such theories are discussed where the setup is generalized from SQED to a more general theory in Section 3. The key part are the non-abelian gauge theories discussed in Section 4 with their metric on the Coulomb branch and non-abelian monopole operators, where also higher-dimensional generalizations are touched. Finally, the last two sections deal with specific applications like SQCD in Section 5 and Linear Quivers of Unitary Groups in Section 6, where also Flavour symmetries and abelian coordinates are included. Interesting views are given from string theory: monopole scattering in type IIB string theories. The appendices give further aspects of singular monopoles as complex symplectic manifolds where the Poisson bracket is defined in terms of the scattering matrix and equivariant integrals and monopoles operators of higher charges.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
81T70 Quantization in field theory; cohomological methods
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] Seiberg N.: Ir dynamics on branes and space-time geometry. Phys. Lett. B 384, 81-85 (1996) arXiv:hep-th/9606017v2 · doi:10.1016/0370-2693(96)00819-2
[2] Seiberg, N., Witten, E.: Gauge dynamics and compactification to three dimensions, Saclay. The Mathematical Beauty of Physics (1996) arXiv:hep-th/9607163v1 · Zbl 1325.14068
[3] Boer J., Hori K., Ooguri H., Oz Y., Yin Z.: Mirror symmetry in three-dimensional gauge theories, SL(2,Z) and d-brane moduli spaces. Nucl. Phys. B493, 148-176 (1996) arXiv:hep-th/9612131v1 · Zbl 0973.14508
[4] Kapustin A., Strassler M.J.: On mirror symmetry in three dimensional abelian gauge theories. JHEP 9904, 021 (1999) arXiv:hep-th/9902033v2 · Zbl 0953.81097 · doi:10.1088/1126-6708/1999/04/021
[5] Hanany A., Witten E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B492, 152-190 (1997) arXiv:hep-th/9611230v3 · Zbl 0996.58509 · doi:10.1016/S0550-3213(97)80030-2
[6] Feng B., Hanany A.: Mirror symmetry by O3-planes. JHEP 0011, 033 (2000) arXiv:hep-th/0004092v1 · Zbl 0990.81597 · doi:10.1088/1126-6708/2000/11/033
[7] Hanany A., Zaffaroni A.: Issues on orientifolds: on the brane construction of gauge theories with SO(2n) global symmetry. JHEP 9907, 009 (1999) arXiv:hep-th/9903242v1 · Zbl 1060.81603 · doi:10.1088/1126-6708/1999/07/009
[8] Gaiotto D., Witten E.: S-duality of boundary conditions in N = 4 super Yang-Mills theory. Adv. Theor. Math. Phys. 13(2), 721-896 (2009) arXiv:0807.3720v1 · Zbl 1206.81082 · doi:10.4310/ATMP.2009.v13.n3.a5
[9] Borokhov V., Kapustin A., Wu X.: Monopole operators and mirror symmetry in three dimensions. JHEP 0212, 044 (2002) arXiv:hep-th/0207074v2 · doi:10.1088/1126-6708/2002/12/044
[10] Borokhov V.: Monopole operators in three-dimensional N = 4 sym and mirror symmetry. JHEP 0403, 008 (2004) arXiv:hep-th/0310254v2 · doi:10.1088/1126-6708/2004/03/008
[11] Cremonesi S., Hanany A., Zaffaroni A.: Monopole operators and hilbert series of Coulomb branches of 3d N = 4 gauge theories. JHEP 1401, 005 (2014) arXiv:1309.2657v1 · doi:10.1007/JHEP01(2014)005
[12] Gomis J., Okuda T., Pestun V.: Exact results for’t hooft loops in gauge theories on S4. JHEP 1205, 141 (2012) arXiv:1105.2568v1 · Zbl 1348.81318 · doi:10.1007/JHEP05(2012)141
[13] Ito Y., Okuda T., Taki M.: Line operators on \[{S^1 \times R^3}\] S1×R3 and quantization of the Hitchin moduli space. JHEP 1204, 010 (2012) arXiv:1111.4221v2 · Zbl 1348.81418 · doi:10.1007/JHEP04(2012)010
[14] Nakajima, H.: Towards a mathematical definition of Coulomb branches of 3-dimensional \[{\mathcal{N}=4}N=4\] gauge theories, I arXiv:1503.03676 · Zbl 1433.81121
[15] Braverman, A., Finkelberg, M., Nakajima, H.: Towards a mathematical definition of Coulomb branches of 3-dimensional \[{\mathcal{N}=4}N=4\] gauge theories, II arXiv:1601.03586 · Zbl 1479.81043
[16] Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb branches of 3d \[{\mathcal{N}=4}N=4\] quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster, and Alex Weekes) arXiv:1604.03625 · Zbl 1479.81044
[17] Teleman, C.: Gauge theory and mirror symmetry arXiv:1404.6305 · Zbl 1373.57050
[18] Bezrukavnikov R., Finkelberk M., Mirkovic I.: Equivariant homology and K-theory of affine Grassmannians and Toda lattices. Compos. Math. 141, 746-768 (2005) · Zbl 1065.19004 · doi:10.1112/S0010437X04001228
[19] Intriligator K., Seiberg N.: Mirror symmetry in three dimensional gauge theories. Phys. Lett. B387, 513-519 (1996) arXiv:hep-th/9607207v1 · doi:10.1016/0370-2693(96)01088-X
[20] Rozansky L., Witten E.: Hyper-Kähler geometry and invariants of three-manifolds. Sel. Math. 3, 401-458 (1997) arXiv:hep-th/9612216v3 · Zbl 0908.53027 · doi:10.1007/s000290050016
[21] Ivanov I.T., Rocek M.: Supersymmetric sigma-models, twistors, and the Atiyah-Hitchin metric. Commun. Math. Phys. 182, 291-302 (1996) arXiv:hep-th/9512075v2 · Zbl 0882.32014 · doi:10.1007/BF02517891
[22] Aharony O., Hanany A., Intriligator K., Seiberg N., Strassler M.J.: Aspects of N = 2 supersymmetric gauge theories in three dimensions. Nucl. Phys. B499(1-2), 67-99 (1997) arXiv:hep-th/9703110v1 · Zbl 0934.81063 · doi:10.1016/S0550-3213(97)00323-4
[23] Seiberg N., Witten E.: Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory. Nucl. Phys. B426, 19-52 (1994) arXiv:hep-th/9407087v1 · Zbl 0996.81510 · doi:10.1016/0550-3213(94)90124-4
[24] Seiberg N., Witten E.: Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B431, 484-550 (1994) arXiv:hep-th/9408099v1 · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[25] Intriligator K., Seiberg N.: Aspects of 3d N = 2 Chern-Simons-matter theories. JHEP 1307, 079 arXiv:1305.1633v2 76 pages, 1 figure. v2: added references (2013) · Zbl 1342.81593 · doi:10.1007/JHEP07(2013)079
[26] Bullimore M., Dimofte T., Gaiotto D., Hilburn J.: Boundaries, mirror symmetry, and symplectic duality in 3d \[{\mathcal{N}=4}N=4\] gauge theory. JHEP 1610, 108 (2016) arXiv:1603.08382 · Zbl 1390.81309 · doi:10.1007/JHEP10(2016)108
[27] Yagi J.: \[{\Omega}\] Ω-deformation and quantization. JHEP 1408, 112 (2014) arXiv:1405.6714v3 · Zbl 1333.81277 · doi:10.1007/JHEP08(2014)112
[28] Gukov S., Witten E.: Gauge theory, ramification, and the geometric Langlands program. Curric. Dev. Math. 2006, 35-180 (2008) arXiv:hep-th/0612073v2 · Zbl 1237.14024 · doi:10.4310/CDM.2006.v2006.n1.a2
[29] Gaiotto D., Moore G.W., Neitzke A.: Framed BPS states. Adv. Theor. Math. Phys. 17, 241-397 (2013) arXiv:1006.0146v1 · Zbl 1290.81146 · doi:10.4310/ATMP.2013.v17.n2.a1
[30] Gukov, S.: Surface operators arXiv:1412.7127v1 · Zbl 1334.81068
[31] Dimofte T., Gaiotto D., Gukov S.: Gauge theories labelled by three-manifolds. Commun. Math. Phys. 325, 367-419 (2014) arXiv:1108.4389v1 · Zbl 1292.57012 · doi:10.1007/s00220-013-1863-2
[32] Gaiotto, D., Koroteev, P.: On three dimensional quiver gauge theories and integrability (2013) arXiv:1304.0779v2 [hep-th] · Zbl 1342.81284
[33] Gadde A., Gukov S., Putrov P.: Walls, lines, and spectral dualities in 3d gauge theories. JHEP 1405, 047 (2014) arXiv:1302.0015v2 · doi:10.1007/JHEP05(2014)047
[34] Kapustin A., Witten E.: Electric-magnetic duality and the geometric langlands program. Commun. Number Theory Phys. 1, 1-236 (2007) arXiv:hep-th/0604151v3 · Zbl 1128.22013 · doi:10.4310/CNTP.2007.v1.n1.a1
[35] Gukov S., Witten E.: Branes and quantization. Adv. Theor. Math. Phys. 13(5), 1445-1518 (2009) arXiv:0809.0305v2 · Zbl 1247.81378 · doi:10.4310/ATMP.2009.v13.n5.a5
[36] Kapustin A., Orlov D.: Remarks on A-branes, mirror symmetry, and the fukaya category. J. Geom. Phys. 48(1), 84-99 (2001) arXiv:hep-th/0109098v1 · Zbl 1029.81058 · doi:10.1016/S0393-0440(03)00026-3
[37] Nekrasov N., Witten E.: The omega deformation, branes, integrability, and Liouville theory. JHEP 9, 092 (2010) arXiv:1002.0888v2 · Zbl 1291.81265 · doi:10.1007/JHEP09(2010)092
[38] Losev A., Nekrasov N., Shatashvili S.: Issues in topological gauge theory. Nucl. Phys. B 534, 549-611 (1997) arXiv:hep-th/9711108v2 · Zbl 0954.57013 · doi:10.1016/S0550-3213(98)00628-2
[39] Losev A., Nekrasov N., Shatashvili S.: Testing Seiberg-Witten solution, strings, branes and dualities (Cargèse, 1997). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 520, 359-372 (1999) arXiv:hep-th/9801061v1 · Zbl 1053.81547
[40] Nekrasov N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831-864 (2004) arXiv:hep-th/0206161v1 · Zbl 1056.81068 · doi:10.4310/ATMP.2003.v7.n5.a4
[41] Shadchin S.: On F-term contribution to effective action. JHEP 08, 052 (2007) arXiv:hep-th/0611278v1 · Zbl 1326.81212 · doi:10.1088/1126-6708/2007/08/052
[42] Luo Y., Tan M.-C., Yagi J., Zhao Q.: \[{\Omega}\] Ω-deformation of b-twisted gauge theories and the 3d-3d correspondence. JHEP 1502, 047 (2015) arXiv:1410.1538v1 · Zbl 1388.81421 · doi:10.1007/JHEP02(2015)047
[43] Bezrukavnikov R., Kaledin D.: Fedosov quantization in algebraic context. Moscow Math. J. 4, 557-592 (2004) arXiv:math/0309290v4 · Zbl 1074.14014
[44] Braden, T., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions I: local and global structure arXiv:1208.3863v3 · Zbl 1360.53001
[45] Losev I.: Isomorphisms of quantizations via quantization of resolutions. Adv. Math. 231, 1216-1270 (2012) arXiv:1010.3182v3 · Zbl 1282.53070 · doi:10.1016/j.aim.2012.06.017
[46] Crawley-Boevey W., Etingof P., Ginzburg V.: Noncommutative geometry and quiver algebras. Adv. Math. 209(1), 274-336 (2007) arXiv:math/0502301v4 · Zbl 1111.53066 · doi:10.1016/j.aim.2006.05.004
[47] Braden T., Licata A., Proudfoot N., Webster B.: Hypertoric category O. Adv. Math. 231(3-4), 1487-1545 (2012) arXiv:1010.2001v3 · Zbl 1284.16029 · doi:10.1016/j.aim.2012.06.019
[48] Dimofte T.: Quantum riemann surfaces in Chern-Simons theory. Adv. Theor. Math. Phys. 17, 479-599 (2013) arXiv:1102.4847v1 · Zbl 1304.81143 · doi:10.4310/ATMP.2013.v17.n3.a1
[49] Gordon I.: A remark on rational cherednik algebras and differential operators on the cyclic quiver. Glasg. Math. J. 48(1), 145-160 (2006) arXiv:math/0507413v1 · Zbl 1169.16302 · doi:10.1017/S0017089505002946
[50] Etingof P., Gan W.L., Ginzburg V., Oblomkov A.: Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products. Publ. Math. IHES 105, 91-155 (2007) arXiv:math/0511489v2 · Zbl 1188.16010 · doi:10.1007/s10240-007-0005-9
[51] Hitchin N.J., Karlhede A., Lindström U., Rocek M.: Hyperkähler metrics and supersymmetry. Commun. Math. Phys. 108(4), 535-589 (1987) · Zbl 0612.53043 · doi:10.1007/BF01214418
[52] Gaiotto D., Moore G.W., Neitzke A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299(1), 163-224 (2010) arXiv:0807.4723v1 · Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2
[53] Hitchin N.: Hyperkahler manifolds. Seminaire Bourbaki 748, 137-166 (1992) Asterisque t. 206 · Zbl 0979.53051
[54] Chalmers G., Hanany A.: Three dimensional gauge theories and monopoles. Nucl. Phys. B 489, 223-244 (1997) arXiv:hep-th/9608105v2 · Zbl 0925.81244 · doi:10.1016/S0550-3213(97)00036-9
[55] Dorey N., Khoze V.V., Mattis M.P., Tong D., Vandoren S.: Instantons, three-dimensional gauge theory, and the Atiyah-Hitchin manifold. Nucl. Phys. B502, 59-93 (1997) arXiv:hep-th/9703228v2 · Zbl 0935.58009 · doi:10.1016/S0550-3213(97)00454-9
[56] Dorey N., Tong D., Vandoren S.: Instanton effects in three-dimensional supersymmetric gauge theories with matter. JHEP 9804, 005 (1998) arXiv:hep-th/9803065v1 · Zbl 0955.81058
[57] Tong D.: Three-dimensional gauge theories and ade monopoles. Phys. Lett. B 448, 33-36 (1999) arXiv:hep-th/9803148v1 · Zbl 1058.81718 · doi:10.1016/S0370-2693(98)01583-4
[58] Gibbons G.W., Manton N.S.: The moduli space metric for well separated BPS monoples. Phys. Lett. B 356, 32-38 (1995) arXiv:hep-th/9506052v1 · doi:10.1016/0370-2693(95)00813-Z
[59] Fraser C., Tong D.: Instantons, three dimensional gauge theories and monopole moduli spaces. Phys. Rev. D 58(8), 085001 (1998) arXiv:hep-th/9710098v2 · doi:10.1103/PhysRevD.58.085001
[60] Atiyah M, Hitchin N: The Geometry and Dynamics of Magnetic Monopoles, pp. viii+134. Princeton University Press, Princeton (1988) · Zbl 0671.53001 · doi:10.1515/9781400859306
[61] Okuda T., Pestun V.: On the instantons and the hypermultiplet mass of \[{N=2*}N=2\]∗ super Yang-Mills on S4. JHEP 1203, 017 (2012) arXiv:1004.1222v1 · Zbl 1309.81168 · doi:10.1007/JHEP03(2012)017
[62] Lindstrom U., Rocek M.: New hyperkahler metrics and new supermultiplets. Commun. Math. Phys. 115, 21 (1988) · Zbl 0639.53077 · doi:10.1007/BF01238851
[63] Cecotti S., Ferrara S., Girardello L.: Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A 4, 2475 (1989) · Zbl 0681.58044 · doi:10.1142/S0217751X89000972
[64] Ferrara S., Sabharwal S.: Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces. Nucl. Phys. B 332, 317-332 (1990) · doi:10.1016/0550-3213(90)90097-W
[65] Rocek M., Vafa C., Vandoren S.: Hypermultiplets and topological strings. JHEP 02, 062 (2006) arXiv:hep-th/0512206 · doi:10.1088/1126-6708/2006/02/062
[66] Alexandrov S., Pioline B., Saueressig F., Vandoren S.: Linear perturbations of quaternionic metrics. Commun. Math. Phys. 296, 353-403 (2010) arXiv:0810.1675 · Zbl 1194.53043 · doi:10.1007/s00220-010-1022-y
[67] Alexandrov S., Pioline B., Saueressig F., Vandoren S.: Linear perturbations of hyperkahler metrics. Lett. Math. Phys. 87, 225-265 (2009) arXiv:0806.4620 · Zbl 1169.53035 · doi:10.1007/s11005-009-0305-8
[68] Donaldson S.K.: Nahm’s equations and the classification of monopoles. Commun. Math. Phys. 96(3), 387-407 (1984) · Zbl 0603.58042 · doi:10.1007/BF01214583
[69] Hurtubise J.: Monopoles and rational maps: a note on a theorem of Donaldson. Commun. Math. Phys. 100(2), 191-196 (1985) · Zbl 0591.58037 · doi:10.1007/BF01212447
[70] Nekrasov, N., Pestun, V.: Seiberg-witten geometry of four dimensional n = 2 quiver gauge theories arXiv:1211.2240v1
[71] Nekrasov, N., Pestun, V., Shatashvili, S.: Quantum geometry and quiver gauge theories arXiv:1312.6689v1 · Zbl 1393.81033
[72] Cherkis S.A., Kapustin A.: Singular monopoles and supersymmetric gauge theories in three dimensions. Nucl. Phys. B 525, 215-234 (1998) arXiv:hep-th/9711145v2 · Zbl 1031.81643 · doi:10.1016/S0550-3213(98)00341-1
[73] Cherkis S.A., Kapustin A.: Dk gravitational instantons and Nahm equations. Adv. Theor. Math. Phys. 2, 1287-1306 (1999) arXiv:hep-th/9803112v3 · Zbl 0945.58017 · doi:10.4310/ATMP.1998.v2.n6.a3
[74] Cherkis S.A., Kapustin A.: Singular monopoles and gravitational instantons. Commun. Math. Phys. 203, 713-728 (1999) arXiv:hep-th/9803160v1 · Zbl 0960.83007 · doi:10.1007/s002200050632
[75] Cherkis S.A., Durcan B.: Singular monopoles via the Nahm transform. JHEP 0804, 070 (2004) arXiv:0712.0850v1 · Zbl 1246.81115
[76] Moore G.W., Royston A.B., den Bleeken D.V.: Parameter counting for singular monopoles on R3. JHEP 1410, 142 (2014) arXiv:1404.5616v1 · Zbl 1336.81059 · doi:10.1007/JHEP10(2014)142
[77] Moore G.W., Royston A.B., den Bleeken D.V.: Brane bending and monopole moduli. JHEP 1410, 157 (2014) arXiv:1404.7158v1 · Zbl 1333.81266 · doi:10.1007/JHEP10(2014)157
[78] Maffei A.: Quiver varieties of type A. Comment. Math. Helv. 80(1), 1-27 (2005) arXiv:math/9812142v2 18 pages, Latex2e · Zbl 1095.16008 · doi:10.4171/CMH/1
[79] Mirković, I., Vybornov, M.: Quiver varieties and beilinson-drinfeld Grassmannians of type A arXiv:0712.4160v2 · Zbl 1068.14056
[80] Nakajima H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76(2), 365-416 (1994) · Zbl 0826.17026 · doi:10.1215/S0012-7094-94-07613-8
[81] Gaiotto D., Witten E.: Supersymmetric boundary conditions in N = 4 super Yang-Mills theory. J. Stat. Phys. 135, 789-855 (2009) arXiv:0804.2902v2 · Zbl 1178.81180 · doi:10.1007/s10955-009-9687-3
[82] Gan W.L., Ginzburg V.: Quantization of Slodowy slices. Int. Math. Res. Not. 5, 243-255 (2002) arXiv:math/0105225v3 · Zbl 0989.17014 · doi:10.1155/S107379280210609X
[83] Gerasimov A., Kharchev S., Lebedev D., Oblezin S.: On a class of representations of the yangian and moduli space of monopoles. Commun. Math. Phys 260, 511-525 (2005) arXiv:math/0409031v2 · Zbl 1142.53069 · doi:10.1007/s00220-005-1417-3
[84] Kamnitzer J., Webster B., Weekes A., Yacobi O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory 8(4), 857-893 (2014) arXiv:1209.0349v2 · Zbl 1325.14068 · doi:10.2140/ant.2014.8.857
[85] Lusztig, G.: Singularities, character formulas, and a q-analog of weight multiplicities. Analysis and topology on singular spaces (Luminy, 1981) 208-229, Asterisque. pp. 101-102 (1983). Soc. Math. France, Paris · Zbl 0990.81597
[86] Ginzburg, V.: Perverse sheaves on a loop group and langlands’ duality alg-geom/9511007v4 · Zbl 1325.14068
[87] Mirkovic I., Vilonen K.: Geometric langlands duality and representations of algebraic groups over commutative rings. Ann. Math. 166(1), 95-143 (2007) arXiv:math/0401222v4 · Zbl 1138.22013 · doi:10.4007/annals.2007.166.95
[88] de Boer J., Hori K., Ooguri H., Oz Y.: Mirror symmetry in three-dimensional gauge theories, quivers and D-branes. Nucl. Phys. B 493, 101-147 (1997) arXiv:hep-th/9611063v2 · Zbl 0973.14507 · doi:10.1016/S0550-3213(97)00125-9
[89] Hanany A., Mekareeya N.: Complete intersection moduli spaces in N = 4 gauge theories in three dimensions. JHEP 1201, 079 (2012) arXiv:1110.6203v2 · Zbl 1306.81108 · doi:10.1007/JHEP01(2012)079
[90] Brundan J., Kleshchev A.: Shifted Yangians and finite W-algebras. Adv. Math. 200, 136-195 (2006) arXiv:math/0407012v2 · Zbl 1083.17006 · doi:10.1016/j.aim.2004.11.004
[91] Brundan, J., Kleshchev, A.: Representations of shifted yangians and finite w-algebras. Mem. Amer. Math. Soc. 196 (2008) arXiv:math/0508003v3 · Zbl 1169.17009
[92] Boer J., Tjin T.: Representation theory of finite W algebras. Commun. Math. Phys. 158, 485-516 (1993) arXiv:hep-th/9211109v1 · Zbl 0796.17026 · doi:10.1007/BF02096800
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.