×

Cluster multiplication in regular components via generalized Chebyshev polynomials. (English) Zbl 1253.16012

Let \(Q\) be an acyclic quiver and \(X_?\colon\mathcal C_Q\to\mathbb Z[\mathbf u^{\pm 1}]\) be the associated Caldero-Chapoton map. The main results of the paper are formulas for \(X_M\) and \(X_MX_N\) when both \(M,N\) are indecomposable regular modules.
A family of polynomials \(\{P_n\}_{n\geq 0}\) are introduced by a recursion relation; these generalize the classical Chebyshev polynomials of the second kind. Numerous examples are given for the reader’s convenience. The first main result (Cor. 4.2) says that a cluster algebra \(\mathcal A\) of Dynkin type \(\mathbb A_r\) can be presented as \(\mathcal A\simeq\mathbb Z[t_0,\dots,t_r]/(P_{r+1}(t_0,\dots,t_r)-1)\).
The next main result (Theorem 5.1) gives, when \(M\) is an indecomposable regular representation of any acyclic quiver, a formula for \(X_M\) in terms of these generalized Chebyshev polynomials evaluated at the quasi-composition factors of \(M\). In particular, this implies that \(X_M\) belongs to the associated cluster algebra when the quasi-composition factors are rigid.
Finally, Theorems 7.2 and 8.3 give multiplication formulas for cluster characters associated to indecomposable regular modules in affine and wild type, respectively. The formulas take the form \(X_MX_N=X_AX_B+X_CX_D\) where \(M,N\) are indecomposable modules in the same regular component of the AR quiver of \(Q\), and \(A,B,C,D\) are indecomposable modules in the same regular component and everything is explicitly given in terms of quasi-socles and quasi-length. In the affine case, the product admits an interpretation as a Hall product in the cluster category \(\mathcal C_Q\) (Corollary 7.1).

MSC:

16G20 Representations of quivers and partially ordered sets
13F60 Cluster algebras
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
13B25 Polynomials over commutative rings
05E15 Combinatorial aspects of groups and algebras (MSC2010)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33C67 Hypergeometric functions associated with root systems

References:

[1] Auslander, M., Reiten, I., Smalø, S.O.: Representation theory of artin algebras. In: Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge (1997). Corrected reprint of the 1995 original · Zbl 0834.16001
[2] Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras III: upper bounds and double bruhat cells. Duke Math. J. 126(1), 1–52. MR2110627 (2005i:16065) (2005) · Zbl 1135.16013 · doi:10.1215/S0012-7094-04-12611-9
[3] Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618. MR2249625 (2007f:16033) (2006) · Zbl 1127.16011 · doi:10.1016/j.aim.2005.06.003
[4] Buan, A., Marsh, R., Reiten, I., Todorov, G.: Clusters and seeds in acyclic cluster algebras. Proc. Am. Math. Soc. 135(10), 3049–3060 (2007) · Zbl 1190.16022 · doi:10.1090/S0002-9939-07-08801-6
[5] Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81, 596–616. MR2250855 (2008b:16015) (2006) · Zbl 1119.16013
[6] Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (A n case). Trans. AMS 358, 1347–1354. MR2187656 (2007a:16025) (2006) · Zbl 1137.16020 · doi:10.1090/S0002-9947-05-03753-0
[7] Caldero, P., Keller, B.: From triangulated categories to cluster algebras II. Ann. Sci. Ec. Norm. Supér. 39(4), 83–100. MR2316979 (2008m:16031) (2006) · Zbl 1115.18301
[8] Caldero, P., Keller, B.: From triangulated categories to cluster algebras. Invent. Math. 172, 169–211. MR2385670 (2008) · Zbl 1141.18012 · doi:10.1007/s00222-008-0111-4
[9] Caldero, P., Zelevinsky, A.: Laurent expansions in cluster algebras via quiver representations. Mosc. Math. J. 6, 411–429. MR2274858 (2008j:16045) (2006) · Zbl 1133.16012
[10] Dupont, G.: Generic Variables in Acyclic Cluster Algebras and Bases in Affine Cluster Algebras. arXiv:0811.2909v2 [math.RT] (2008)
[11] Dupont, G.: Quantized Chebyshev polynomials and cluster characters with coefficients. J. Algebr. Comb. 31(4), 501–532 (2010) · Zbl 1231.05290 · doi:10.1007/s10801-009-0198-8
[12] Dunkl, C., Xu, Y.: Orthogonal polynomials of several variables. In: Encyclopedia of Mathematics and its Applications, vol. 81. Cambridge University Press, Cambridge (2001) · Zbl 0964.33001
[13] Fu, C., Keller, B.: On cluster algebras with coefficients and 2-Calabi-Yau categories. Trans. Am. Math. Soc. 362, 859–895 (2010) · Zbl 1201.18007 · doi:10.1090/S0002-9947-09-04979-4
[14] Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529. MR1887642 (2003f:16050) (2002) · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[15] Fomin, S., Zelevinsky, A.: Cluster algebras II: Finite type classification. Invent. Math. 154, 63–121. MR2004457 (2004m:17011) (2003) · Zbl 1054.17024 · doi:10.1007/s00222-003-0302-y
[16] Hubery, A.: Acyclic Cluster Algebras via Ringel–Hall Algebras. http://www.maths.leeds.ac.uk/hubery/Cluster.pdf (2006) · Zbl 1107.16021
[17] Keller, B.: On triangulated orbit categories. Doc. Math. 10, 551–581. MR2184464 (2007c:18006) (2005) · Zbl 1086.18006
[18] Keller, B.: Categorification of Acyclic Cluster Algebras: An Introduction. arXiv:0801.3103v1 [math.RT] (2008)
[19] Marsh, R., Reineke, M., Zelevinsky, A.: Generalized associahedra via quiver representations. Trans. Am. Math. Soc. 355(1), 4171–4186. MR1990581 (2004g:52014) (2003) · Zbl 1042.52007 · doi:10.1090/S0002-9947-03-03320-8
[20] Palu, Y.: Cluster characters for 2-Calabi-Yau triangulated categories. Ann. Inst. Fourier (Grenoble) 58(6), 2221–2248 (2008) · Zbl 1154.16008 · doi:10.5802/aif.2412
[21] Palu, Y.: Cluster Characters II: A Multiplication Formula. arXiv:0903.3281v2 [math.RT] (2009)
[22] Riedtmann, C.: Algebren, darstellungskcher, berlagerungen und zurck. Comment. Math. Helv. 55, 199–224 (1980) · Zbl 0444.16018 · doi:10.1007/BF02566682
[23] Ringel, C.M.: Finite dimensional hereditary algebras of wild representation type. Math. Z. 161(3), 235–255 (1978) · Zbl 0415.16023 · doi:10.1007/BF01214506
[24] Ringel, C.M.: Tame algebras and integral quadratic forms. Lect. Notes Math. 1099, 1–376. MR0774589 (87f:16027) (1984) · Zbl 0546.16013 · doi:10.1007/BFb0072871
[25] Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, vol. 3. London Mathematical Society Student Texts, vol. 72. Cambridge University Press, Cambridge (2007). Representation–Infinite Tilted Algebras · Zbl 1131.16001
[26] Xiao, J., Xu, F.: Green’s Formula with \(\mathbb{C}\)*-Action and Caldero–Keller’s Formula for Cluster Algebras. arXiv:0707.1175v2 [math.QA] (2007)
[27] Zhang, Y.B.: The modules in any component of the AR-quiver of a wild hereditary Artin algebra are uniquely determined by their composition factors. Arch. Math. (Basel) 53(3), 250–251 (1989) · doi:10.1007/BF01277058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.