×

The \(Q\)-shaped derived category of a ring – compact and perfect objects. (English) Zbl 07876042

Summary: A chain complex can be viewed as a representation of a certain self-injective quiver with relations, \(Q\). To define \(Q\), include a vertex \(q_n\) and an arrow \(q_n \xrightarrow{\partial } q_{n-1}\) for each integer \(n\). The relations are \(\partial^2 = 0\).
Replacing \(Q\) by a general self-injective quiver with relations, it turns out that some of the key properties of chain complexes generalise. Indeed, consider the representations of such a \(Q\) with values in \({}_A\mspace{-1mu}\operatorname{Mod}\) where \(A\) is a ring. We showed in earlier work that these representations form the objects of the \(Q\)-shaped derived category, \( \mathcal{D}_Q(A)\), which is triangulated and generalises the classic derived category \(\mathcal{D}_{}(A)\). This follows ideas of Iyama and Minamoto.
While \(\mathcal{D}_Q(A)\) has many good properties, it can also diverge dramatically from \(\mathcal{D}_{}(A)\). For instance, let \(Q\) be the quiver with one vertex \(q\), one loop \(\partial \), and the relation \(\partial^2 = 0\). By analogy with perfect complexes in the classic derived category, one may expect that a representation with a finitely generated free module placed at \(q\) is a compact object of \(\mathcal{D}_Q(A)\), but we will show that this is, in general, false.
The purpose of this paper, then, is to compare and contrast \(\mathcal{D}_Q(A)\) and \(\mathcal{D}_{}(A)\) by investigating several key classes of objects: Perfect and strictly perfect, compact, fibrant, and cofibrant.

MSC:

16E35 Derived categories and associative algebras
18G80 Derived categories, triangulated categories
18N40 Homotopical algebra, Quillen model categories, derivators

Software:

OEIS

References:

[1] Avramov, Luchezar L., Class and rank of differential modules, Invent. Math., 1-35, 2007 · Zbl 1153.13010 · doi:10.1007/s00222-007-0041-6
[2] Avramov, Luchezar L., Homological dimensions of unbounded complexes, J. Pure Appl. Algebra, 129-155, 1991 · Zbl 0737.16002 · doi:10.1016/0022-4049(91)90144-Q
[3] B\"{o}kstedt, Marcel, Homotopy limits in triangulated categories, Compositio Math., 209-234, 1993 · Zbl 0802.18008
[4] Bondal, A. I., Representable functors, Serre functors, and reconstructions, Math. USSR-Izv.. Izv. Akad. Nauk SSSR Ser. Mat., 1183-1205, 1337, 1989 · Zbl 0703.14011 · doi:10.1070/IM1990v035n03ABEH000716
[5] Dekking, F. Michel, The structure of Zeckendorf expansions, Integers, Paper No. A6, 10 pp., 2021 · doi:10.1080/14697688.2020.1828609
[6] Dell’Ambrogio, Ivo, Gorenstein homological algebra and universal coefficient theorems, Math. Z., 1109-1155, 2017 · Zbl 1405.16014 · doi:10.1007/s00209-017-1862-7
[7] Enochs, E., Gorenstein categories and Tate cohomology on projective schemes, Math. Nachr., 525-540, 2008 · Zbl 1146.18004 · doi:10.1002/mana.200510622
[8] Enochs, Edgar E., Relative homological algebra, De Gruyter Expositions in Mathematics, xii+339 pp., 2000, Walter de Gruyter & Co., Berlin · Zbl 0952.13001 · doi:10.1515/9783110803662
[9] Finch, Steven, The on-line encyclopedia of integer sequences, Math. Intelligencer, 146-147, 2021 · Zbl 1494.68308 · doi:10.1007/s00283-021-10060-2
[10] Garc\'{\i }a Rozas, J. R., Covers and envelopes in the category of complexes of modules, Chapman & Hall/CRC Research Notes in Mathematics, x+137 pp., 1999, Chapman & Hall/CRC, Boca Raton, FL · Zbl 0922.16001
[11] Gillespie, James, Model structures on exact categories, J. Pure Appl. Algebra, 2892-2902, 2011 · Zbl 1315.18019 · doi:10.1016/j.jpaa.2011.04.010
[12] Gillespie, James, Hereditary abelian model categories, Bull. Lond. Math. Soc., 895-922, 2016 · Zbl 1372.18001 · doi:10.1112/blms/bdw051
[13] Gillespie, James, Models for homotopy categories of injectives and Gorenstein injectives, Comm. Algebra, 2520-2545, 2017 · Zbl 1373.18007 · doi:10.1080/00927872.2016.1233215
[14] G\"{o}bel, R\"{u}diger, Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, xxiv+640 pp., 2006, Walter de Gruyter GmbH & Co. KG, Berlin · Zbl 1121.16002 · doi:10.1515/9783110199727
[15] Happel, Dieter, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, x+208 pp., 1988, Cambridge University Press, Cambridge · Zbl 0635.16017 · doi:10.1017/CBO9780511629228
[16] Holm, Henrik, Cotorsion pairs in categories of quiver representations, Kyoto J. Math., 575-606, 2019 · Zbl 1423.18036 · doi:10.1215/21562261-2018-0018
[17] Henrik Holm and Peter Jrgensen, Model categories of quiver representations, Adv. Math. 357 (2019), article no. 106826, 46 pp. MR4013804 · Zbl 1437.18007
[18] Henrik Holm and Peter Jrgensen, The \(Q\)-shaped derived category of a ring, J. London Math. Soc. (2), 54 pp., published online https://doi.org/10.1112/jlms.12662DOI: 10.1112/jlms.12662, 2022.
[19] Hovey, Mark, Model categories, Mathematical Surveys and Monographs, xii+209 pp., 1999, American Mathematical Society, Providence, RI · Zbl 0909.55001
[20] Hovey, Mark, Cotorsion pairs, model category structures, and representation theory, Math. Z., 553-592, 2002 · Zbl 1016.55010 · doi:10.1007/s00209-002-0431-9
[21] Iacob, Alina, Direct sums of exact covers of complexes, Math. Scand., 161-181, 2006 · Zbl 1137.16018 · doi:10.7146/math.scand.a-14989
[22] Iacob, Alina, Homological dimensions and regular rings, J. Algebra, 3451-3458, 2009 · Zbl 1186.13012 · doi:10.1016/j.jalgebra.2009.08.006
[23] Ishikawa, Takeshi, On injective modules and flat modules, J. Math. Soc. Japan, 291-296, 1965 · Zbl 0199.07802 · doi:10.2969/jmsj/01730291
[24] Osamu Iyama and Hiroyuki Minamoto, \( \mathscr A\)-derived categories, in preparation.
[25] Osamu Iyama and Hiroyuki Minamoto, On a generalization of complexes and their derived categories, extended abstract of a talk at the 47th Ring and Representation Theory Symposium, Osaka City University, 2014. MR3363946
[26] Kelly, G. M., Basic concepts of enriched category theory, Repr. Theory Appl. Categ., vi+137 pp., 2005 · Zbl 1086.18001
[27] Krause, Henning, Homological theory of representations, Cambridge Studies in Advanced Mathematics, xxxiv+482 pp., 2022, Cambridge University Press, Cambridge · Zbl 1526.16001
[28] Mac Lane, Saunders, Categories for the working mathematician, Graduate Texts in Mathematics, xii+314 pp., 1998, Springer-Verlag, New York · Zbl 0906.18001
[29] Neeman, Amnon, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., 205-236, 1996 · Zbl 0864.14008 · doi:10.1090/S0894-0347-96-00174-9
[30] Neeman, Amnon, Triangulated categories, Annals of Mathematics Studies, viii+449 pp., 2001, Princeton University Press, Princeton, NJ · Zbl 0974.18008 · doi:10.1515/9781400837212
[31] Rickard, Jeremy, Derived categories and stable equivalence, J. Pure Appl. Algebra, 303-317, 1989 · Zbl 0685.16016 · doi:10.1016/0022-4049(89)90081-9
[32] Rouquier, Rapha\"{e}l, Dimensions of triangulated categories, J. K-Theory, 193-256, 2008 · Zbl 1165.18008 · doi:10.1017/is007011012jkt010
[33] Saor\'{\i }n, Manuel, On exact categories and applications to triangulated adjoints and model structures, Adv. Math., 968-1007, 2011 · Zbl 1235.18010 · doi:10.1016/j.aim.2011.05.025
[34] Weibel, Charles A., An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, xiv+450 pp., 1994, Cambridge University Press, Cambridge · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
[35] Zeckendorf, E., Repr\'{e}sentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Li\`ege, 179-182, 1972 · Zbl 0252.10011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.