×

Quasirandom estimations of two-qubit operator-monotone-based separability probabilities. (English) Zbl 1486.81036

Summary: We conduct a pair of quasirandom estimations of the separability probabilities with respect to 10 measures on the 15-dimensional convex set of two-qubit states, using its Euler-angle parametrization. The measures include the (nonmonotone) Hilbert-Schmidt one, plus nine others based on operator monotone functions. Our results are supportive of previous assertions that the Hilbert-Schmidt and Bures (minimal monotone) separability probabilities are \(\frac{ 8}{ 3 3}\approx0.242424\) and \(\frac{ 2 5}{ 3 4 1}\approx0.0733138\), respectively, as well as suggestive of the Wigner-Yanase counterpart being \(\frac{ 1}{ 2 0} \). However, one result appears inconsistent (much too small) with an earlier claim of ours that the separability probability associated with the operator monotone (geometric-mean) function \(\sqrt{ x}\) is \(1-\frac{ 2 5 6}{ 2 7 \pi^2}\approx0.0393251\). But a seeming explanation for this disparity is that the volume of states for the \(\sqrt{ x} \)-based measure is infinite. So, the validity of the earlier conjecture – as well as an alternative one, \( \frac{ 1}{ 9}(593-60 \pi^2)\approx0.0915262\), we now introduce – cannot be examined through the numerical approach adopted, at least perhaps not without some truncation procedure for extreme values.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
81P42 Entanglement measures, concurrencies, separability criteria
81P16 Quantum state spaces, operational and probabilistic concepts
28B05 Vector-valued set functions, measures and integrals
70F05 Two-body problems

References:

[1] Slater, P. B., Quantum Inform. Process.17 (2018) 83.
[2] Życzkowski, K., Horodecki, P., Sanpera, A. and Lewenstein, M., Phys. Rev. A58 (1998) 883.
[3] Lovas, A. and Andai, A., J. Phys. A, Math. Theor.50, (2017) 295303. · Zbl 1370.81028
[4] Ozawa, M., Phys. Lett. A268 (2000) 158. · Zbl 0948.81515
[5] P. B. Slater, arXiv:1803.10680.
[6] Milz, S. and Strunz, W. T., J. Phys. A48 (2015) 035306. · Zbl 1315.81018
[7] Slater, P. B., Quantum Inform. Process.15 (2016) 3745.
[8] Slater, P. B., J. Geom. Phys.59, (2009) 17. · Zbl 1154.81003
[9] Andai, A., J. Phys. A, Math. Gen.39, (2006) 13641. · Zbl 1106.81015
[10] Petz, D. and Sudár, C., J. Math. Phys.37, (1996) 2662. · Zbl 0868.60098
[11] Gibilisco, P. and Isola, T., J. Math. Phys.44 (2003) 3752. · Zbl 1062.81019
[12] Slater, P. B., J. Phys. A46 (2013) 445302.
[13] Slater, P. B., Quantum Inform. Process.18 (2019) 312.
[14] Slater, P. B., J. Geom. Phys.53 (2005) 74. · Zbl 1065.81032
[15] Slater, P. B., Phys. Rev. A71 (2005) 052319. · Zbl 1227.81130
[16] Ökten, G., Math. Educ. Res.8 (1999) 52.
[17] Tilma, T., Byrd, M. and Sudarshan, E., J. Phys. A, Math. Gen.35 (2002) 10445. · Zbl 1044.22010
[18] Slater, P. B., J. Geom. Phys.58 (2008) 1101. · Zbl 1192.81028
[19] Slater, P. B., J. Phys. A32 (1999) 5261. · Zbl 0946.81014
[20] Slater, P. B., J. Phys. A, Math. Theor.45 (2012) 455303, https://doi.org/10.1088/1751-8113/45/45/455303. · Zbl 1267.81078
[21] Slater, P. B., Quantum Inform. Process.18 (2019) 121, https://doi.org/10.1007/s11128-019-2230-9.
[22] Osipov, V. A., Sommers, H.-J. and Życzkowski, K., J. Phys. A43 (2010) 055302. · Zbl 1186.81033
[23] Życzkowski, K. and Sommers, H.-J., J. Phys. A34 (2001) 7111. · Zbl 1031.81011
[24] M. Roberts, The unreasonable effectiveness of quasirandom sequences, http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/.
[25] P. B. Slater, How can one generate an open ended sequence of low discrepancy points in 3d? https://math.stackexchange.com/questions/2231391/how-can-one-generate-an-open-ended-sequence-of-low-discrepancy-points-in-3d.
[26] Livio, M., The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number (Broadway Books, 2008). · Zbl 1136.00005
[27] P. B. Slater, Can i use compile to speed up inversecdf? https://mathematica.stackexchange.com/questions/181099/can-i-use-compile-to-speed-up-inversecdf.
[28] Tonchev, N., J. Math. Phys.57 (2016) 071903. · Zbl 1353.53017
[29] Krattenthaler, C. and Slater, P. B., IEEE Trans. Inf. Theory46 (2000) 801. · Zbl 0999.94019
[30] Hildebrand, R., Phys. Rev. A76 (2007) 052325.
[31] Kuś, M. and Życzkowski, K., Phys. Rev. A63 (2001) 032307.
[32] S. Arunachalam, N. Johnston and V. Russo, arXiv:1405.5853.
[33] Khvedelidze, A. and Rogojin, I., J. Math. Sci.209 (2015) 988. · Zbl 1326.81029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.