×

Resolutions of ideals of quasiuniform fat point subschemes of \(\mathbb{P}^2\). (English) Zbl 1028.14020

Let \(p_1,\dots,p_n\) be general points in the projective plane \(\mathbb P^2\), with corresponding homogeneous ideals \(P_1,\dots,P_n\). An ideal of the form \(I({\mathbf m},n) = P_1^{m_1} \cap \dots \cap P_n^{m_n}\) (where \(\mathbf m = (m_1,\dots,m_n)\) is an \(n\)-tuple of non-negative integers) defines a fat point subscheme \(Z \subset \mathbb P^2\). If \(m_1 = \dots = m_n = m\) (say), we say that m (or \(Z\)) is uniform and just write \(I(m,n)\). There are several conjectures about the Hilbert function and minimal free resolution of the ideal \(I(\mathbf m,n)\), and the answers are known in some cases (mostly uniform cases) and counterexamples are known in a few cases. However, all known failures involve \(n < 9\). The conjectures all involve some sort of maximal rank property.
In this paper the authors introduce the notion of quasiuniformity, saying that \(\mathbf m\) is quasiuniform if \({\mathbf m} = (m_1,m_2,\dots,m_n)\) with \(n \geq 9\) and \(m_1 = \dots = m_9 \geq m_{10} \geq \dots \geq m_n \geq 0\). They give conjectures for the Hilbert function and minimal free resolution of quasiuniform fat point schemes. Since quasiuniformity is an extension of the notion of uniformity, they note that their conjectures contain as special cases the existing conjectures (or in a few cases, theorems) for the uniform case. They also prove a number of solid results that give substantial evidence for their conjectures, especially for the uniform case. In particular, they prove the conjectures for infinitely many \(m\) for each of infinitely many \(n\), and for infinitely many \(n\) for every \(m>2\). They also show that in many cases the Hilbert function conjecture implies the resolution conjecture. As a by-product of their work, they get a strong bound on the regularity of \(I(m,n)\).

MSC:

14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
13D02 Syzygies, resolutions, complexes and commutative rings
13H15 Multiplicity theory and related topics

References:

[1] J. Alexander and A. Hirschowitz, An asymptotic vanishing theorem for generic unions of multiple points, Invent. Math. 140 (2000), no. 2, 303 – 325. · Zbl 0973.14026 · doi:10.1007/s002220000053
[2] Giulio Campanella, Standard bases of perfect homogeneous polynomial ideals of height 2, J. Algebra 101 (1986), no. 1, 47 – 60. · Zbl 0609.13001 · doi:10.1016/0021-8693(86)90095-5
[3] Maria Virginia Catalisano, ”Fat” points on a conic, Comm. Algebra 19 (1991), no. 8, 2153 – 2168. · Zbl 0758.14005 · doi:10.1080/00927879108824252
[4] Ciro Ciliberto and Rick Miranda, Degenerations of planar linear systems, J. Reine Angew. Math. 501 (1998), 191 – 220. · Zbl 0943.14002
[5] Ciro Ciliberto and Rick Miranda, Linear systems of plane curves with base points of equal multiplicity, Trans. Amer. Math. Soc. 352 (2000), no. 9, 4037 – 4050. · Zbl 0959.14015
[6] Edward D. Davis, Anthony V. Geramita, and Paolo Maroscia, Perfect homogeneous ideals: Dubreil’s theorems revisited, Bull. Sci. Math. (2) 108 (1984), no. 2, 143 – 185 (English, with French summary). · Zbl 0559.14034
[7] P. Dubreil. Sur quelques propriétés des systèmes de points dans le plan et des courbes gauches algébriques, Bull. Soc. Math. France, 61 (1933), 258-283. · JFM 59.1307.01
[8] Evain Laurent, La fonction de Hilbert de la réunion de 4^{\?} gros points génériques de \?&sup2; de même multiplicité, J. Algebraic Geom. 8 (1999), no. 4, 787 – 796 (French, with French summary). · Zbl 0953.14027
[9] Stephanie Fitchett, On bounding the number of generators for fat point ideals on the projective plane, J. Algebra 236 (2001), no. 2, 502 – 521. · Zbl 1007.14008 · doi:10.1006/jabr.2000.8516
[10] Stephanie Fitchett, Maps of linear systems on blow-ups of the projective plane, J. Pure Appl. Algebra 156 (2001), no. 1, 1 – 14. · Zbl 1056.14503 · doi:10.1016/S0022-4049(99)00115-2
[11] Stephanie Fitchett, Brian Harbourne, and Sandeep Holay, Resolutions of fat point ideals involving eight general points of \?&sup2;, J. Algebra 244 (2001), no. 2, 684 – 705. · Zbl 1033.14031 · doi:10.1006/jabr.2001.8931
[12] A. V. Geramita, D. Gregory, and L. Roberts, Monomial ideals and points in projective space, J. Pure Appl. Algebra 40 (1986), no. 1, 33 – 62. · Zbl 0586.13015 · doi:10.1016/0022-4049(86)90029-0
[13] A. V. Geramita and F. Orecchia, Minimally generating ideals defining certain tangent cones, J. Algebra 78 (1982), no. 1, 36 – 57. · Zbl 0502.14001 · doi:10.1016/0021-8693(82)90101-6
[14] Alessandro Gimigliano, Our thin knowledge of fat points, The Curves Seminar at Queen’s, Vol. VI (Kingston, ON, 1989) Queen’s Papers in Pure and Appl. Math., vol. 83, Queen’s Univ., Kingston, ON, 1989, pp. Exp. No. B, 50. · Zbl 0743.14005
[15] Alessandro Gimigliano, Regularity of linear systems of plane curves, J. Algebra 124 (1989), no. 2, 447 – 460. · Zbl 0702.14003 · doi:10.1016/0021-8693(89)90142-7
[16] Brian Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane, Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 95 – 111. · Zbl 0611.14002
[17] Brian Harbourne, Iterated blow-ups and moduli for rational surfaces, Algebraic geometry (Sundance, UT, 1986) Lecture Notes in Math., vol. 1311, Springer, Berlin, 1988, pp. 101 – 117. · doi:10.1007/BFb0082911
[18] Brian Harbourne, Points in good position in \?&sup2;, Zero-dimensional schemes (Ravello, 1992) de Gruyter, Berlin, 1994, pp. 213 – 229. · Zbl 0820.14034
[19] Brian Harbourne, Anticanonical rational surfaces, Trans. Amer. Math. Soc. 349 (1997), no. 3, 1191 – 1208. · Zbl 0860.14006
[20] Brian Harbourne, Free resolutions of fat point ideals on \?&sup2;, J. Pure Appl. Algebra 125 (1998), no. 1-3, 213 – 234. · Zbl 0901.14030 · doi:10.1016/S0022-4049(96)00126-0
[21] Brian Harbourne, The ideal generation problem for fat points, J. Pure Appl. Algebra 145 (2000), no. 2, 165 – 182. · Zbl 0942.14024 · doi:10.1016/S0022-4049(98)00077-2
[22] Brian Harbourne, An algorithm for fat points on \?&sup2;, Canad. J. Math. 52 (2000), no. 1, 123 – 140. · Zbl 0963.14021 · doi:10.4153/CJM-2000-006-6
[23] B. Harbourne. Problems and Progress: A survey on fat points in 2, Queen’s papers in Pure and Applied Mathematics, The Curves Seminar at Queen’s, vol. 123, 2002. CMP 2002:12 · Zbl 1052.14052
[24] B. Harbourne and J. Roé. Linear systems with multiple base points in 2, preprint (2001). · Zbl 1080.14505
[25] André Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationnelles génériques, J. Reine Angew. Math. 397 (1989), 208 – 213 (French). · Zbl 0686.14013 · doi:10.1515/crll.1989.397.208
[26] Monica Idà, The minimal free resolution for the first infinitesimal neighborhoods of \? general points in the plane, J. Algebra 216 (1999), no. 2, 741 – 753. · Zbl 0943.13008 · doi:10.1006/jabr.1998.7772
[27] Rick Miranda, Linear systems of plane curves, Notices Amer. Math. Soc. 46 (1999), no. 2, 192 – 201. · Zbl 0919.14002
[28] David Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) Edizioni Cremonese, Rome, 1970, pp. 29 – 100.
[29] Masayoshi Nagata, On the 14-th problem of Hilbert, Amer. J. Math. 81 (1959), 766 – 772. · Zbl 0192.13801 · doi:10.2307/2372927
[30] Masayoshi Nagata, On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/1961), 271 – 293. · Zbl 0100.16801
[31] J. Roé. Linear systems of plane curves with imposed multiple points, Illinois J. Math. 45 (2001), 895-906. · Zbl 0988.14002
[32] Geng Xu, Ample line bundles on smooth surfaces, J. Reine Angew. Math. 469 (1995), 199 – 209. · Zbl 0833.14028 · doi:10.1515/crll.1995.469.199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.