×

Conditional displacement interaction in transversal direction from the quantum Rabi model. (English) Zbl 1448.81220

Summary: We investigate the realization of conditional displacement interaction in transversal direction from the quantum Rabi model by adjusting parameters of external magnetic fields. The special interaction is derived in the system of qubit(s) coupled to a resonator. We explore the implementation of quantum gates and the generation of superposed coherent states based on the transversal conditional displacement interaction, and consolidate the investigations numerically. We also show the special interaction can be realized by using the quantum Rabi model with qubit-qubit coupling.

MSC:

81P65 Quantum gates
81V80 Quantum optics
81P40 Quantum coherence, entanglement, quantum correlations
78A30 Electro- and magnetostatics
Full Text: DOI

References:

[1] Braak, D, Integrability of the Rabi model, Phys. Rev. Lett., 107, 100401, (2011) · doi:10.1103/PhysRevLett.107.100401
[2] Rabi, II, On the process of space quantization, Phys. Rev., 49, 324-328, (1936) · Zbl 0013.37401 · doi:10.1103/PhysRev.49.324
[3] Rabi, II, Space quantization in a gyrating magnetic field, Phys. Rev., 51, 652-654, (1937) · Zbl 0017.23501 · doi:10.1103/PhysRev.51.652
[4] Jaynes, ET; Cummings, FW, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE, 51, 89c109, (1963) · doi:10.1109/PROC.1963.1664
[5] Thompson, RJ; Rempe, G; Kimble, HJ, Observation of normal-mode splitting for an atom in an optical cavity, Phys. Rev. Lett., 68, 1132, (1992) · doi:10.1103/PhysRevLett.68.1132
[6] Boca, A; Miller, R; Birnbaum, KM; Boozer, AD; McKeever, J; Kimble, HJ, Observation of the vacuum Rabi spectrum for one trapped atom, Phys. Rev. Lett., 93, 233603, (2004) · doi:10.1103/PhysRevLett.93.233603
[7] Raimond, JM; Brune, M; Haroche, S, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys., 73, 565, (2001) · Zbl 1205.81029 · doi:10.1103/RevModPhys.73.565
[8] Brune, M; Schmidt-Kaler, F; Maali, A; Dreyer, J; Hagley, E; Raimond, JM; Haroche, S, Quantum Rabi oscillation: a direct test of field quantization in a cavity, Phys. Rev. Lett., 76, 1800, (1996) · Zbl 1244.81072 · doi:10.1103/PhysRevLett.76.1800
[9] Forn-Díaz, P; Lisenfeld, J; Marcos, D; García-Ripoll, JJ; Solano, E; Harmans, CJPM; Mooij, JE, Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime, Phys. Rev. Lett., 105, 237001, (2010) · doi:10.1103/PhysRevLett.105.237001
[10] Niemczyk, T; Deppe, F; Huebl, H; Menzel, EP; Hocke, F; Schwarz, MJ; García-Ripoll, JJ; Zueco, D; Hümmer, T; Solano, E; Marx, A; Gross, R, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys., 6, 772, (2010) · doi:10.1038/nphys1730
[11] Yoshihara, F; Fuse, T; Ashhab, S; Kakuyanagi, K; Saito, S; Semba, K, Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys., 13, 44, (2017) · doi:10.1038/nphys3906
[12] Günter, G; Anappara, AA; Hees, J; Sell, A; Biasiol, G; Sorba, L; Liberato, S; Ciuti, C; Tredicucci, A; Leitenstorfer, A; Huber, R, Sub-cycle switch-on of ultrastrong light-matter interaction, Nature, 458, 178, (2005) · doi:10.1038/nature07838
[13] Fedorov, A; Feofanov, AK; Macha, P; Forn-Díaz, P; Harmans, CJPM; Mooij, JE, Strong coupling of a quantum oscillator to a flux qubit at its symmetry point, Phys. Rev. Lett., 105, 060503, (2010) · doi:10.1103/PhysRevLett.105.060503
[14] Schwartz, T; Hutchison, JA; Genet, C; Ebbesen, TW, Reversible switching of ultrastrong light-molecule coupling, Phys. Rev. Lett., 106, 196405, (2011) · doi:10.1103/PhysRevLett.106.196405
[15] Goryachev, M; Farr, WG; Creedon, DL; Fan, Y; Kostylev, M; Tobar, ME, High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl., 2, 054002, (2014) · doi:10.1103/PhysRevApplied.2.054002
[16] Zhang, Q; Lou, M; Li, X; Reno, JL; Pan, W; Watson, JD; Manfra, MJ; Kono, J, Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity-photon, Nat. Phys., 12, 1005, (2016) · doi:10.1038/nphys3850
[17] Chen, Z; Wang, Y; Li, T; Tian, L; Qiu, Y; Inomata, K; Yoshihara, F; Han, S; Nori, F; Tsai, JS; You, JQ, Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system, Phys. Rev. A, 96, 012325, (2017) · doi:10.1103/PhysRevA.96.012325
[18] Langford, NK; Sagastizabal, R; Kounalakis, M; Dickel, C; Bruno, A; Luthi, F; Thoen, DJ; Endo, A; DiCarlo, L, Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling, Nat. Commun., 8, 1715, (2017) · doi:10.1038/s41467-017-01061-x
[19] Braumüller, J; Marthaler, M; Schneider, A; Stehli, A; Rotzinger, H; Weides, M; Ustinov, AV, Analog quantum simulation of the Rabi model in the ultra-strong coupling regime, Nat. Commun., 8, 779, (2017) · doi:10.1038/s41467-017-00894-w
[20] Cárdenas-López, FA; Albarrán-Arriagada, F; Barrios, GA; Retamal, JC; Romero, G, Incoherent-mediator for quantum state transfer in the ultrastrong coupling regime, Sci. Rep., 7, 4157, (2017) · doi:10.1038/s41598-017-04467-1
[21] Du, LH; Zhou, XF; Zhou, ZW; Zhou, X; Guo, GC, Generalized Rabi model in quantum-information processing including the \(\mathbf{A}^{2}\) term, Phys. Rev. A, 86, 014303, (2012) · doi:10.1103/PhysRevA.86.014303
[22] Albarrán-Arriagada, F; Barrios, GA; Cárdenas-López, FA; Romero, G; Retamal, JC, Generation of higher dimensional entangled states in quantum Rabi systems, J. Phys. Math. Theor., 50, 184001, (2017) · Zbl 1366.81316 · doi:10.1088/1751-8121/aa66a0
[23] Armata, F; Calajo, G; Jaako, T; Kim, MS; Rabl, P, Harvesting multiqubit entanglement from ultrastrong interactions in circuit quantum electrodynamics, Phys. Rev. Lett., 119, 183602, (2017) · doi:10.1103/PhysRevLett.119.183602
[24] Leggett, AJ, Testing the limits of quantum mechanics: motivation, state of play, prospects, J. Phys. Condens. Matter, 14, r415, (2002) · doi:10.1088/0953-8984/14/15/201
[25] Armour, AD; Blencowe, MP; Schwab, KC, Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box, Phys. Rev. Lett., 88, 148301, (2002) · doi:10.1103/PhysRevLett.88.148301
[26] Liao, JQ; Huang, JF; Tian, L, Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems, Phys. Rev. A, 93, 033853, (2016) · doi:10.1103/PhysRevA.93.033853
[27] Monroe, C; Meekhof, DM; King, BE; Wineland, DJ, A Schrödinger cat superposition state of an atom, Science, 272, 1131, (1996) · Zbl 1226.81011 · doi:10.1126/science.272.5265.1131
[28] Haljan, PC; Brickman, KA; Deslauriers, L; Lee, PJ; Monroe, C, Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion, Phys. Rev. Lett., 94, 153602, (2005) · doi:10.1103/PhysRevLett.94.153602
[29] Yin, Z; Li, T; Zhang, X; Duan, LM, Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling, Phys. Rev. A, 88, 033614, (2013) · doi:10.1103/PhysRevA.88.033614
[30] Liu, Y; Wei, LF; Nori, F, Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit, Phys. Rev. A, 71, 063820, (2005) · doi:10.1103/PhysRevA.71.063820
[31] Liao, JQ; Kuang, LM, Nanomechanical resonator coupling with a double quantum dot: quantum state engineering, Eur. Phys. J. B, 63, 79, (2008) · doi:10.1140/epjb/e2008-00213-y
[32] Sørensen, A; Mølmer, K, Entanglement and quantum computation with ions in thermal motion, Phys. Rev. A, 62, 022311, (2000) · doi:10.1103/PhysRevA.62.022311
[33] García-Ripoll, JJ; Zoller, P; Cirac, J, Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing, Phys. Rev. Lett., 91, 157901, (2003) · doi:10.1103/PhysRevLett.91.157901
[34] Leibfried, D; DeMarco, B; Meyer, V; Lucas, D; Barrett, M; Britton, J; Itano, MW; Jelenkovic, B; Langer, C; Rosenband, T; Wineland, DJ, Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate, Nature, 422, 412, (2003) · doi:10.1038/nature01492
[35] Feng, XL; Wang, Z; Wu, C; Kwek, LC; Lai, CH; Oh, CH, Scheme for unconventional geometric quantum computation in cavity QED, Phys. Rev. A, 75, 052312, (2007) · doi:10.1103/PhysRevA.75.052312
[36] Feng, XL; Wu, C; Sun, H; Oh, CH, Geometric entangling gates in decoherence-free subspaces with minimal requirements, Phys. Rev. Lett., 103, 200501, (2009) · doi:10.1103/PhysRevLett.103.200501
[37] Billangeon, PM; Tsai, JS; Nakamura, Y, Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits, Phys. Rev. B, 91, 094517, (2015) · doi:10.1103/PhysRevB.91.094517
[38] Zhu, SL; Wang, ZD, Unconventional geometric quantum computation, Phys. Rev. Lett., 91, 187902, (2003) · doi:10.1103/PhysRevLett.91.187902
[39] Kirchmair, G; Benhelm, J; Zahringer, F; Gerritsma, R; Roos, C; Blatt, R, Deterministic entanglement of ions in thermal states of motion, New J. Phys., 11, 023002, (2009) · doi:10.1088/1367-2630/11/2/023002
[40] Wang, X; Zanardi, P, Simulation of many-body interactions by conditional geometric phase, Phys. Rev. A, 65, 032327, (2002) · doi:10.1103/PhysRevA.65.032327
[41] Christian, FR, Ion trap quantum gates with amplitude-modulated laser beams, New J. Phys., 10, 013002, (2008) · doi:10.1088/1367-2630/10/1/013002
[42] Romero, G; Ballester, D; Wang, YM; Scarani, V; Solano, E, Ultrafast quantum gates in circuit QED, Phys. Rev. Lett., 108, 120501, (2012) · doi:10.1103/PhysRevLett.108.120501
[43] Kyaw, TH; Herrera-Martí, DA; Solano, E; Romero, G; Kwek, LC, Creation of quantum error correcting codes in the ultrastrong coupling regime, Phys. Rev. B, 91, 064503, (2015) · doi:10.1103/PhysRevB.91.064503
[44] Chilingaryan, SA; Rodrłguez-Lara, BM, The quantum Rabi model for two qubits, J. Phys. A Math. Theor., 46, 335301, (2013) · Zbl 1273.81032 · doi:10.1088/1751-8113/46/33/335301
[45] Mao, L; Huai, S; Zhang, Y, The two-qubit quantum Rabi model: inhomogeneous coupling, J. Phys. A Math. Theor., 48, 345302, (2015) · Zbl 1326.81040 · doi:10.1088/1751-8113/48/34/345302
[46] Silveri, MP; Tuorila, JA; Thuneberg, EV; Paraoanu, GS, Quantum systems under frequency modulation, Rep. Prog. Phys., 80, 056002, (2017) · doi:10.1088/1361-6633/aa5170
[47] Xue, ZY; Zhou, J; Wang, ZD, Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits, Phys. Rev. A, 92, 022320, (2015) · doi:10.1103/PhysRevA.92.022320
[48] Strand, J; Ware, M; Beaudoin, F; Ohki, T; Johnson, B; Blais, A; Plourde, B, First-order sideband transitions with flux-driven asymmetric transmon qubits, Phys. Rev. B, 87, 220505(r), (2013) · doi:10.1103/PhysRevB.87.220505
[49] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory (Applied Mathematical Sciences). Springer, New York (1998) · Zbl 0893.35138 · doi:10.1007/978-3-662-03537-5
[50] Bures, D, An extension of kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-algebras, Trans. Am. Math. Soc., 135, 199, (1969) · Zbl 0176.11402
[51] Uhlmann, A, The transition probability in the state space of a w*-algebra, Rep. Math. Phys., 9, 273, (1976) · Zbl 0355.46040 · doi:10.1016/0034-4877(76)90060-4
[52] Hübner, M, Computation of uhlmann’s parallel transport for density matrices and the bures metric on three-dimensional Hilbert space, Phys. Lett. A, 163, 229, (1992) · doi:10.1016/0375-9601(92)91004-B
[53] Jozsa, R, A new proof of the quantum noiseless coding theorem, J. Mod. Opt., 41, 2315, (1994) · Zbl 0941.81508 · doi:10.1080/09500349414552171
[54] Schumacher, B, Quantum coding, Phys. Rev. A, 51, 2738, (1995) · doi:10.1103/PhysRevA.51.2738
[55] Jaako, T; Xiang, Z; Garcia-Ripoll, JJ; Rabl, P, Ultrastrong-coupling phenomena beyond the Dicke model, Phys. Rev. A, 94, 033850, (2016) · doi:10.1103/PhysRevA.94.033850
[56] Zanardi, P; Zalka, C; Faoro, L, On the entangling power of quantum evolutions, Phys. Rev. A, 62, 030301(r), (2000) · doi:10.1103/PhysRevA.62.030301
[57] Zanardi, P, Entanglement of quantum evolutions, Phys. Rev. A, 63, 040304(r), (2001) · Zbl 1255.81016 · doi:10.1103/PhysRevA.63.040304
[58] Makhlin, Y, Characterization of two-qubit perfect entanglers, Quantum Inf. Process., 1, 243, (2002) · doi:10.1023/A:1022144002391
[59] Zhang, J; Vala, J; Sastry, S; Whaley, KB, Geometric theory of nonlocal two-qubit operations, Phys. Rev. A, 67, 042313, (2003) · doi:10.1103/PhysRevA.67.042313
[60] Deng, C; Orgiazzi, J; Shen, F; Ashhab, S; Lupascu, A, Observation of Floquet states in a strongly driven artificial atom, Phys. Rev. Lett., 115, 133601, (2015) · doi:10.1103/PhysRevLett.115.133601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.