×

Conformal covariance, modular structure, and duality for local algebras in free massless quantum field theories. (English) Zbl 0644.46057

Summary: The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincaré group in each model extends to a unitary representation of SU(2,2), a covering group of the conformal group. An irreducible set of “standard” linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. The modular operators for these algebras are obtained in explicit form using the conformal covariance and the results of Bisognano and Wichmann on the modular structure of the wedge algebras. The modular automorphism groups are implemented by one- parameter groups of conformal transformations. The modular conjugation operators are used to prove the duality property for the double-cone algebras and the timelike duality property for the lightcone algebras.

MSC:

46N99 Miscellaneous applications of functional analysis
46L60 Applications of selfadjoint operator algebras to physics
81T05 Axiomatic quantum field theory; operator algebras
Full Text: DOI

References:

[1] Hislop, P. D.; Longo, R., Commun. Math. Phys., 84, 71 (1982) · Zbl 0491.46060
[2] Bisognano, J. J.; Wichmann, E. H., J. Math. Phys., 17, 303 (1976)
[3] Buchholz, D., (Baumgärtel; etal., Proceedings, Int. Conf. on Operator Algebras, Ideals, and Their Application in Theoretical Physics (1978), Teubner: Teubner Leipzig), 146-153 · Zbl 0404.46054
[4] Dell’ Antonio, G. F., Commun. Math. Phys., 9, 81 (1968) · Zbl 0159.29002
[5] Bratteli, O.; Robinson, D. W., (Operator Algebras and Quantum Statistical Mechanics I (1981), Springer-Verlag: Springer-Verlag New York/Heidelberg/Berlin) · Zbl 0463.46052
[6] Wigner, E. P., Ann. Math., 40, 149 (1939) · JFM 65.1129.01
[7] Weinberg, S., Feynman rules for any spin. II. Massless particles, Phys. Rev. B, 134, 882 (1964) · Zbl 0134.45904
[8] Streater, R. F.; Wightman, A. S., (PCT, Spin and Statistics, and All That (1964), Benjamin-Cummings: Benjamin-Cummings Reading, MA) · Zbl 0135.44305
[9] Jost, R., (The General Theory of Quantized Fields (1965), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0127.19105
[10] E. H. Wichmann; E. H. Wichmann
[11] Vladimirov, V. S., (Ehrenpreis, L., Methods of the Theory of Functions of Many Complex Variables (1966), MIT Press: MIT Press Cambridge, MA), Scripta Technica (tr.) · Zbl 0181.37403
[12] Post, G., J. Math. Phys., 17, 24 (1976)
[13] Jakobsen, H. P.; Vergne, M., J. Funct. Anal., 24, 52 (1977) · Zbl 0361.22012
[14] Mack, G., Commun. Math. Phys., 55, 1 (1977) · Zbl 0352.22012
[15] Haag, R.; Kastler, D., J. Math. Phys., 5, 848 (1964) · Zbl 0139.46003
[16] Longo, R., Commun. Math. Phys., 69, 195 (1979) · Zbl 0421.46053
[17] Swieca, J. A.; Völkel, A. H., Commun. Math. Phys., 24, 319 (1973)
[18] Landau, L. J., Commun. Math. Phys., 39, 49 (1974) · Zbl 0309.46055
[19] Hislop, P. D., The Modular Structure of Local Algebras Associated with Massless Free Quantum Fields, (Ph. D. thesis (1984), University of California: University of California Berkeley), unpublished · Zbl 0657.58045
[20] Gottfried, K., (Quantum Mechanics, Vol. I (1966), Benjamin: Benjamin New York), “Fundamentals”, Sect. 25
[21] Schwartz, J., J. Math. Phys., 2, 271 (1961) · Zbl 0103.22202
[22] Mack, G.; Todorov, I., J. Math. Phys., 10, 2078 (1969) · Zbl 0183.29003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.