×

The deductive phase of statistical analysis via predictive simulations: Test, validation and control of a linear model with autocorrelated errors representing a food process. (English) Zbl 1094.62034

Summary: Statistical analysis consists of two phases: induction for model parameter estimation and deduction to make decisions on the basis of the statistical model. In the Bayesian context, predictive analysis is the key concept to perform the deductive phase. In that context, Monte-Carlo posterior simulations are shown to be extremely valuable tools to achieve for instance model selection and model checking. An example of predictive analysis by simulation is detailed for the linear model with Autocorrelated Errors which has been beforehand estimated by Gibbs sampling. Numerical illustrations are then given for a food process with data collected on line. Special attention is cast on the control of its anticipated behavior under uncertainty within Bayesian decision theory.

MSC:

62F15 Bayesian inference
65C05 Monte Carlo methods
62J05 Linear regression; mixed models
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P30 Applications of statistics in engineering and industry; control charts

Software:

BayesDA
Full Text: DOI

References:

[1] Abraham, C., Asymptotic limit of the Bayes action set derived from a class of loss functions, J. Multivariate Anal., 79, 251-274 (2001) · Zbl 0987.62003
[2] Aoki, M., Optimization of Stochastic Systems (1967), Academic Press: Academic Press New York · Zbl 0168.15802
[3] Berger, J. O., Statistical Decision Theory and Bayesian Analysis (1985), Springer: Springer New York · Zbl 0572.62008
[4] Berger, J.O., Rios Insua, D., 1998. Recent developments in Bayesian inference with applications in hydrology. In: Statistical and Bayesian Methods in Hydrological Sciences. Selected papers from the International Conference in honor of Professor Jacques Bernier, UNESCO IHP-V, Technical Document in Hydrology No. 20, 11-13 September 1995, pp. 43-61.; Berger, J.O., Rios Insua, D., 1998. Recent developments in Bayesian inference with applications in hydrology. In: Statistical and Bayesian Methods in Hydrological Sciences. Selected papers from the International Conference in honor of Professor Jacques Bernier, UNESCO IHP-V, Technical Document in Hydrology No. 20, 11-13 September 1995, pp. 43-61.
[5] Bernardo, J. M.; Smith, A. F.M., Bayesian Theory (1994), Wiley: Wiley London · Zbl 0796.62002
[6] Besag, J. O., A candidate’s formula a curious result in Bayesian prediction, Biometrika, 76, 183-193 (1989) · Zbl 0664.62028
[7] Box, G. E.P., Sampling and Bayes’ inference in scientific modelling and robustness (with discussion), J. Roy. Statist. Soc. A, 143, 383-430 (1980) · Zbl 0471.62036
[8] Box, G. E.P.; Tiao, G., Bayesian Inference in Statistical Analysis (1973), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0271.62044
[9] Broemeling, L. D., Bayesian Analysis of Linear Models (1984), Marcel Dekker, Inc: Marcel Dekker, Inc New York, Basel · Zbl 0303.62029
[10] Carlin, B.; Chib, S., Bayesian model choice via Markov Chain Monte Carlo methods, J. Roy. Statist. Soc. B, 57, 473-484 (1995) · Zbl 0827.62027
[11] Chaouche, A.; Parent, E., Inférence et validation bayésiennes d’un modèle de pluie journalière en régime de mousson, Hydrological Sci. J., 44, 2, 199-220 (1999)
[12] Chib, S., Bayes regression with autocorrelated erros — a Gibbs sampling approach, J. Econometrics, 58, 275-294 (1993) · Zbl 0775.62068
[13] Chib, S., Marginal likelihood from the Gibbs output, J. Amer. Statist. Assoc., 90, 1313-1321 (1995) · Zbl 0868.62027
[14] Chib, S.; Jeliazkov, I., Marginal likelihood from the Metropolis-Hastings output, J. Amer. Statist. Assoc., 96, 270-281 (2001) · Zbl 1015.62020
[15] Clyde, M.A., 1999. Bayesian model averaging and model search strategies. In: J.M. Bernardo et al. (Eds.), Bayesian Statistics, Vol. 6. Oxford University Press, Oxford, pp. 157-185.; Clyde, M.A., 1999. Bayesian model averaging and model search strategies. In: J.M. Bernardo et al. (Eds.), Bayesian Statistics, Vol. 6. Oxford University Press, Oxford, pp. 157-185. · Zbl 0973.62022
[16] Gelfand, A.; Dey, D., Sampling-based approaches to calculating marginal densities, J. Roy. Statist. Soc. B, 56, 3, 501-514 (1994) · Zbl 0800.62170
[17] Gelfand, A.; Smith, A. F.M., Sampling-based approaches to calculating marginal densities, J. Amer. Statist. Assoc., 85, 398-409 (1990) · Zbl 0702.62020
[18] Gelfand, A., Dey, D., Chang, H., 1992. Model determination using predictive distributions with implementation via sampling-based methods. In: Bernardo, J.M. et al. (Eds.), Bayesian Statistics, Vol. 4. Oxford University Press, Oxford, pp. 147-158.; Gelfand, A., Dey, D., Chang, H., 1992. Model determination using predictive distributions with implementation via sampling-based methods. In: Bernardo, J.M. et al. (Eds.), Bayesian Statistics, Vol. 4. Oxford University Press, Oxford, pp. 147-158.
[19] Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B., Bayesian Data Analysis (1995), Chapman & Hall: Chapman & Hall London
[20] Gilks, W.; Richardson, S.; Spiegelhalter, D., Markov Chain Monte Carlo in Practice (1996), Chapman & Hall: Chapman & Hall London · Zbl 0832.00018
[21] Girard, P., 1999. Optimisation du suivi opérationnel de la qualité en usine par la modélisation de procédés agroalimentaires à partir de données recueillies sur ligne. Ph.D. Dissertation, Ecole du Génie Rural des Eaux et des Forêts, Paris, France.; Girard, P., 1999. Optimisation du suivi opérationnel de la qualité en usine par la modélisation de procédés agroalimentaires à partir de données recueillies sur ligne. Ph.D. Dissertation, Ecole du Génie Rural des Eaux et des Forêts, Paris, France.
[22] Girard, P.; Parent, E., Analyse bayésienne du modèle linéaire avec erreur autocorrélée par échantillonnage de Gibbsapplication à la modélisation de procédé agroalimentaire à partir de données recueillies sur ligne, Revue de Statistiques Appliquées, 38, 1-25 (2000)
[23] Girard, P.; Parent, E., Bayesian analysis of autocorrelated ordered categorical data for industrial quality monotoring, Technometrics, 42, 4, 1-12 (2001)
[24] Gutierrez-Pena, E.; Smith, A. F.M., Aspect of smoothing and model inadequacy in generalized regression, J. Statist. Plann. Inference, 67, 273-286 (1998) · Zbl 0932.62077
[25] Kadane, J. B.; Wolson, L. J.; O’Hagan, A.; Craig, R., Papers on Elicitation and discussions, The Statistician, 47, 1, 3-53 (1998)
[26] Kass, R.; Raftery, A. E., Bayes factor, J. Amer. Statist. Assoc., 90, 773-795 (1995) · Zbl 0846.62028
[27] Kass, R.E., Garlin, B.P., Gelman, A., Neal, R.M., 1996. Markov chain Monte Carlo in practice: a roundtable discussion. In: Proceedings of the Joint Statistical Meetings, Chicago, pp. 1-8.; Kass, R.E., Garlin, B.P., Gelman, A., Neal, R.M., 1996. Markov chain Monte Carlo in practice: a roundtable discussion. In: Proceedings of the Joint Statistical Meetings, Chicago, pp. 1-8.
[28] Lee, J.; Hsu, Y. L., Bayesian analysis of growth curves with AR(1) dependence, J. Statist. Plann. Inference, 64, 205-229 (1997) · Zbl 0920.62037
[29] Lee, J.; Niu, W.-F., On an unbalanced growth curve model with random effects and AR(1) errors from a Bayesian and the ML point of view, J. Statist. Plann. Inference, 76, 41-55 (1999) · Zbl 1054.62529
[30] Newton, M.; Raftery, A. E., Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion), J. Roy. Statis. Soc. B, 56, 3-48 (1994) · Zbl 0788.62026
[31] Press, W. H.; Teuklosky, S. A.; Flannery, B. R.; Vettering, W. T., Numerical Recipes in C—The Art of Scientific Computing (1988), Cambridge University Press: Cambridge University Press Cambridge, MA · Zbl 0661.65001
[32] Raftery, A., 1994. Hypothesis testing and model selection via posterior simulation. Technical Report 270, Duke University, pp. 1-23. (http:www.stat.duke.edu/tech.reports/test-postsim.ps; Raftery, A., 1994. Hypothesis testing and model selection via posterior simulation. Technical Report 270, Duke University, pp. 1-23. (http:www.stat.duke.edu/tech.reports/test-postsim.ps
[33] Raftery, A., Approximate Bayes factors and accounting for model uncertainty in generalised linear models, Biometrika, 83, 251-266 (1996) · Zbl 0864.62049
[34] Robert, C. P.; Casella, G., Monte Carlo Statistical Methods (1999), Springer: Springer New York · Zbl 0935.62005
[35] Tanner, M. A., Tools for Statistical Inference: Methods for the Exploration of Posterior Distribution and Likelihood Functions (1996), Springer: Springer New York · Zbl 0846.62001
[36] Vounatsou, P.; Smith, A. F.M., Simulation-based Bayesian inference for two variance components linear models, J. Statist. Plann. Inference, 59, 139-161 (1997) · Zbl 0880.62033
[37] Zellner, A., An Introduction to Bayesian Inference in Econometrics (1971), Krieger Robert E: Krieger Robert E London · Zbl 0246.62098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.