×

Metric characterization of pure unrectifiability. (English) Zbl 1142.26312

Summary: We show that an analytic subset of the finite dimensional Euclidean space \(\mathbb R^m\) is purely unrectifiable if and only if the image of any of its compact subsets under every local Lipschitz quotient function is a Lebesgue null. We also construct purely unrectifiable compact sets of Hausdorff dimension greater than 1 which are necessarily sent to finite sets by local Lipschitz quotient functions.

MSC:

26B05 Continuity and differentiation questions
46B20 Geometry and structure of normed linear spaces

References:

[1] S. Bates, W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman, Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal., 9 (1999), 1092-1127. · Zbl 0954.46014 · doi:10.1007/s000390050108
[2] A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points III, Math. Ann., 116 (1939), 349-357. · Zbl 0020.01003 · doi:10.1007/BF01597361
[3] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York, (1969). · Zbl 0176.00801
[4] H. Federer, The \((\phi,k)\) rectifiable subsets of \(n\) space, Trans. Amer. Math. Soc., 62 (1947), 536-547. · Zbl 0032.14902 · doi:10.2307/1990632
[5] M. Gromov, Metric structures for riemannian and non-riemannian spaces, Progress in Math., Birkhauser, Boston, (1997).
[6] I. M. James, Introduction to uniform spaces, Cambridge University Press, (1990). · Zbl 0719.54036
[7] W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman, Uniform quotient mappings of the plane, Michigan Math. J., 47 (2000), 15-31. · Zbl 1004.54019 · doi:10.1307/mmj/1030374666
[8] M. D. Kirszbraun, Uber die zusammenziehenden und Lipschitzchen Transformationen, Fund. Math., 22 (1934), 77-108. · Zbl 0009.03904
[9] Kuratowski, Topology, Vol. II, Academic Press, New York (1968).
[10] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc., 4 (1954), 257-302. · Zbl 0056.05504 · doi:10.1112/plms/s3-4.1.257
[11] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, (1995). · Zbl 0819.28004
[12] G. T. Whyburn, Topological analysis, Princeton mathematical series 23 , Princeton Univ. Press, (1964). · Zbl 0186.55901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.