×

Universal singular sets and unrectifiability. (English) Zbl 1264.49042

Summary: The geometry of universal singular sets has recently been studied by M. Csörnyei et al. [“Universal singular sets in the calculus of variations”, Arch. Ration. Mech. Anal. 190, No. 3, 371–424 (2008)]. In particular they proved that given a purely unrectifiable compact set \(S \subseteq \mathbb{R}^2\), one can construct a \(C^{\infty}\)-Lagrangian with a given superlinearity such that the universal singular set of \(L\) contains \(S\). We show the natural generalization: That given an \(F_{\sigma}\) purely unrectifiable subset of the plane, one can construct a \(C^{\infty}\)-Lagrangian, of arbitrary superlinearity, with universal singular set covering this subset.

MSC:

49N60 Regularity of solutions in optimal control
28A75 Length, area, volume, other geometric measure theory
Full Text: DOI

References:

[1] Ball, J. M. and Mizel, V. J., One-dimensional variational problems whose min- imizers do not satisfy the Euler-Lagrange equation. Arch. Ration. Mech. Anal. 90 (1985)(4), 325 - 388. · Zbl 0585.49002 · doi:10.1007/BF00276295
[2] Ball, J. M. and Nadirashvili, N. S., Universal singular sets for one-dimensional variational problems. Calc. Var. Part. Diff. Equs. 1 (1993)(4), 429 - 438. · Zbl 0896.49022 · doi:10.1007/BF01206961
[3] Buttazzo, G., Giaquinta, M. and Hildebrandt, S., One-Dimensional Varia- tional Problems. An Introduction. Oxford: Oxford Univ. Press 1998. · Zbl 0915.49001
[4] Csörnyei, M., O’Neil, T. C., Kirchheim, B., Preiss, D. and Winter, S., Univer- sal singular sets in the calculus of variations. Arch. Ration. Mech. Anal. 190 (2008)(3), 371 - 424. · Zbl 1218.49049 · doi:10.1007/s00205-008-0142-4
[5] Davie, A. M., Singular minimisers in the calculus of variations in one dimension. Arch. Ration. Mech. Anal. 101 (1988)(2), 161 - 177. · Zbl 0656.49005 · doi:10.1007/BF00251459
[6] Lavrentiev, M., Sur quelques probl‘ emes du calcul des variations (in French). Ann. Mat. Pura Appl. 4 (1926), 7 - 28.
[7] Sychëv, M. A., The Lebesgue measure of a universal singular set in the sim- plest problems of the calculus of variations (in Russian). Sibirsk. Mat. Zh. 35 (1994)(6), 1373 - 1389; Engl. transl.: Siberian Math. J. 35 (1994)(6), 1220 - 1233. · Zbl 0856.49035 · doi:10.1007/BF02104722
[8] Tonelli, L., Sur un méthode directe du calcul des variations (in French). Rend. Circ. Mat. Palermo 39 (1915), 233 - 264. · JFM 45.0615.02
[9] Tonelli, L., Fondamentica di Calcolo delle Variazioni II (in Italian). Bologna: Zanichelli 1923.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.