×

A dichotomy of sets via typical differentiability. (English) Zbl 1458.26015

The question of differentiability of a typical Lipschitz function inside a given analytic subset \(N\) of \(\mathbb{R}^d\), \(d \geq 2\) is studied. It is exposed a complete characterisation of the subsets \(N\) of \(\mathbb{R}^d\) in which a typical 1-Lipschitz function has points of differentiability: they cannot be covered by an \(F_{\sigma}\)-purely unrectifiable set (such sets are considered as typical differentiability sets). It is also shown that for all remaining sets \(N\), a typical 1-Lipschitz function is nowhere differentiable, even directionally, inside \(N\).
A set \(S \subseteq (0, 1)^d\) is considered as a typical differentiability set if a typical 1-Lipschitz function has points of differentiability in \(S\), i.e. Diff\( (f) \bigcap S\not= \emptyset\). Subsets of \((0, 1)^d\) in which a typical 1-Lipschitz function has no points of differentiability is considered as typical non-differentiability sets. A priori, a set \(S \subseteq (0, 1)^d\) may have exactly one of these two properties, or none.

MSC:

26B05 Continuity and differentiation questions
26A16 Lipschitz (Hölder) classes
26A21 Classification of real functions; Baire classification of sets and functions
28A05 Classes of sets (Borel fields, \(\sigma\)-rings, etc.), measurable sets, Suslin sets, analytic sets
28A75 Length, area, volume, other geometric measure theory

References:

[1] Alberti, G., Csörnyei, M., and Preiss, D., ‘Differentiability of Lipschitz functions, structure of null sets, and other problems’, in Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II-IV: Invited Lectures(World Scientific, 2010), 1379-1394. · Zbl 1251.26010
[2] Banach, S., ‘Über die Baire’sche Kategorie gewisser Funktionenmengen’, Studia Mathematica3(1):174-179, 1931. · JFM 57.0305.05
[3] Choquet, G., ‘Application des propriétés descriptives de la fonction contingent à la théorie des fonctions de variable réelle et à la géométrie différentielle des variétés cartésiennes’, J. Math. Pures Appl.9(26):115-226 (1948), 1947. · Zbl 0035.24201
[4] Csörnyei, M., Preiss, D., and Tiser, J., ‘Lipschitz functions with unexpectedly large sets of nondifferentiability points’, 2005, Abstract and Applied Analysis, (4), 361-373, 2005. · Zbl 1098.26010
[5] Doré, M. and Maleva, O., ‘A universal differentiability set in Banach spaces with separable dual’, Journal of Functional Analysis261(6):1674-1710, 2011. · Zbl 1230.46035
[6] Dymond, M., ‘Typical differentiability within an exceptionally small set’, J. Math. Anal. Appl.490 (2020), no. 2. · Zbl 1458.26014
[7] Dymond, M. and Maleva, O., ‘Differentiability inside sets with Minkowski dimension one’, Michigan Math. J.65(3):613-636, 08 2016. · Zbl 1366.46029
[8] Federer, H., Geometric Measure Theory, Classics in Mathematics, (Springer, 1996). · Zbl 0874.49001
[9] Fitzpatrick, S., ‘Differentiation of real-valued functions and continuity of metric projections’, Proceedings of the American Mathematical Society91(4):544-548, 1984. · Zbl 0604.46050
[10] Hewitt, E. and Stromberg, K., Real and Abstract Analysis, (Springer-Verlag, New York-Heidelberg, 1975). · Zbl 0307.28001
[11] Kechris, A., Classical Descriptive Set Theory, vol. 156(Springer Science & Business Media, 2012). · Zbl 0819.04002
[12] Kirszbraun, M., ‘Über die zusammenziehende und Lipschitzsche Transformationen’, Fundamenta Mathematicae22(1):77-108, 1934. · JFM 60.0532.03
[13] Kuratowski, C., Topology I, (Academic PressNew York and London, 1966). · Zbl 0158.40802
[14] Le Donne, E., Pinamonti, A., and Speight, G., ‘Universal differentiability sets and maximal directional derivatives in Carnot groups’, J. Math. Pures Appl.9(121):83-112, 2019. · Zbl 1412.53054
[15] Maleva, O. and Preiss, D., ‘Cone unrectifiable sets and non-differentiability of Lipschitz functions’, Israel Journal of Mathematics232 (2019), no. 1, 75-108. · Zbl 1429.26018
[16] Mattila, P., Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics (Cambridge University Press, 1995). · Zbl 0819.28004
[17] Merlo, A., ‘Full non-differentiability of typical Lipschitz functions’, arXiv:1906.08366, 2019.
[18] Petruska, G., ‘On Borel sets with small cover: A problem of M. Laczkovich’, Real Analysis Exchange18(2):330-338, 1992. · Zbl 0783.28001
[19] Pinamonti, A. and Speight, G., ‘A measure zero universal differentiability set in the Heisenberg group’, Math. Ann.368(1-2):233-278, 2017. · Zbl 1375.26024
[20] Preiss, D. ‘Differentiability of Lipschitz functions on Banach spaces’, Journal of Functional Analysis91(2):312-345, 1990. · Zbl 0711.46036
[21] Preiss, D. and Speight, G., Differentiability of Lipschitz functions in Lebesgue null sets’, Invent. Math.199(2):517-559, 2015. · Zbl 1317.26011
[22] Preiss, D. and Tišer, J., ‘Points of non-differentiability of typical Lipschitz functions’, Real Analysis Exchange20(1):219-226, 1994. · Zbl 0844.26004
[23] Rădulescu, S. and Rădulescu, M., ‘Local inversion theorems without assuming continuous differentiability’, J. Math. Anal. Appl.138(2):581-590, 1989. · Zbl 0745.58008
[24] Solecki, S., ‘Covering analytic sets by families of closed sets’, J. Symbolic Logic59(3):1022-1031, (09) 1994. · Zbl 0808.03031
[25] Zahorski, Z., ‘ Sur les ensembles des points de divergence de certaines intégrales singulières’, Ann. Soc. Polon. Math.19:66-105 (1947), 1946. · Zbl 0033.37501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.