×

GFiRe – gauge field integrator for reheating. (English) Zbl 1492.83101


MSC:

83E05 Geometrodynamics and the holographic principle
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
80A10 Classical and relativistic thermodynamics
31C45 Other generalizations (nonlinear potential theory, etc.)
53C30 Differential geometry of homogeneous manifolds
58J47 Propagation of singularities; initial value problems on manifolds
39A12 Discrete version of topics in analysis
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
47A10 Spectrum, resolvent
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

References:

[1] A.D. Dolgov and D.P. Kirilova, 1990 On particle creation by a time dependent scalar field Sov J. Nucl. Phys.51 172
[2] A.D. Dolgov and D.P. Kirilova, 1990 Yad. Fiz.51 273
[3] J.H. Traschen and R.H. Brandenberger, 1990 Particle production during out-of-equilibrium phase transitions, https://doi.org/10.1103/PhysRevD.42.2491 Phys. Rev. D 42 2491 · doi:10.1103/PhysRevD.42.2491
[4] L. Kofman, A.D. Linde and A.A. Starobinsky, 1994 Reheating after inflation, https://doi.org/10.1103/PhysRevLett.73.3195 Phys. Rev. Lett.73 3195 [hep-th/9405187] · doi:10.1103/PhysRevLett.73.3195
[5] Y. Shtanov, J.H. Traschen and R.H. Brandenberger, 1995 Universe reheating after inflation, https://doi.org/10.1103/PhysRevD.51.5438 Phys. Rev. D 51 5438 [hep-ph/9407247] · doi:10.1103/PhysRevD.51.5438
[6] L. Kofman, A.D. Linde and A.A. Starobinsky, 1997 Towards the theory of reheating after inflation, https://doi.org/10.1103/PhysRevD.56.3258 Phys. Rev. D 56 3258 [hep-ph/9704452] · doi:10.1103/PhysRevD.56.3258
[7] B.A. Bassett, S. Tsujikawa and D. Wands, 2006 Inflation dynamics and reheating, https://doi.org/10.1103/RevModPhys.78.537 Rev. Mod. Phys.78 537 [astro-ph/0507632] · doi:10.1103/RevModPhys.78.537
[8] R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, 2010 Reheating in inflationary cosmology: theory and applications, https://doi.org/10.1146/annurev.nucl.012809.104511 Ann. Rev. Nucl. Part. Sci.60 27 [1001.2600] · doi:10.1146/annurev.nucl.012809.104511
[9] A.V. Frolov, 2010 Non-linear dynamics and primordial curvature perturbations from preheating, https://doi.org/10.1088/0264-9381/27/12/124006 Class. Quant. Grav.27 124006 [1004.3559] · Zbl 1190.83117 · doi:10.1088/0264-9381/27/12/124006
[10] M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, 2014 Nonperturbative dynamics of reheating after inflation: a review, https://doi.org/10.1142/S0218271815300037 Int. J. Mod. Phys. D 24 1530003 [1410.3808] · Zbl 1308.83155 · doi:10.1142/S0218271815300037
[11] K.D. Lozanov, Lectures on reheating after inflation, [1907.04402] · Zbl 1470.83001
[12] D.I. Podolsky, G.N. Felder, L. Kofman and M. Peloso, 2006 Equation of state and beginning of thermalization after preheating, https://doi.org/10.1103/PhysRevD.73.023501 Phys. Rev. D 73 023501 [hep-ph/0507096] · doi:10.1103/PhysRevD.73.023501
[13] K.D. Lozanov and M.A. Amin, 2017 Equation of state and duration to radiation domination after inflation, https://doi.org/10.1103/PhysRevLett.119.061301 Phys. Rev. Lett.119 061301 [1608.01213] · doi:10.1103/PhysRevLett.119.061301
[14] K.D. Lozanov and M.A. Amin, 2018 Self-resonance after inflation: oscillons, transients and radiation domination, https://doi.org/10.1103/PhysRevD.97.023533 Phys. Rev. D 97 023533 [1710.06851] · doi:10.1103/PhysRevD.97.023533
[15] M.B. Hindmarsh and T.W.B. Kibble, 1995 Cosmic strings, https://doi.org/10.1088/0034-4885/58/5/001 Rept. Prog. Phys.58 477 [hep-ph/9411342] · doi:10.1088/0034-4885/58/5/001
[16] E.J. Copeland and T.W.B. Kibble, 2010 Cosmic strings and superstrings, https://doi.org/10.1098/rspa.2009.0591 Proc. Roy. Soc. Lond. A 466 623 [0911.1345] · Zbl 1195.83098 · doi:10.1098/rspa.2009.0591
[17] M.A. Amin, R. Easther, H. Finkel, R. Flauger and M.P. Hertzberg, 2012 Oscillons after inflation, https://doi.org/10.1103/PhysRevLett.108.241302 Phys. Rev. Lett.108 241302 [1106.3335] · doi:10.1103/PhysRevLett.108.241302
[18] M. Gleiser, N. Graham and N. Stamatopoulos, 2011 Generation of coherent structures after cosmic inflation, https://doi.org/10.1103/PhysRevD.83.096010 Phys. Rev. D 83 096010 [1103.1911] · doi:10.1103/PhysRevD.83.096010
[19] K. Enqvist, S. Kasuya and A. Mazumdar, 2002 Inflatonic solitons in running mass inflation, https://doi.org/10.1103/PhysRevD.66.043505 Phys. Rev. D 66 043505 [hep-ph/0206272] · doi:10.1103/PhysRevD.66.043505
[20] M.A. Amin and P. Mocz, 2019 Formation, gravitational clustering and interactions of nonrelativistic solitons in an expanding universe, https://doi.org/10.1103/PhysRevD.100.063507 Phys. Rev. D 100 063507 [1902.07261] · doi:10.1103/PhysRevD.100.063507
[21] J.C. Niemeyer and R. Easther, Inflaton clusters and inflaton stars, [1911.01661]
[22] N. Musoke, S. Hotchkiss and R. Easther, 2020 Lighting the dark: the evolution of the post-inflationary universe, https://doi.org/10.1103/PhysRevLett.124.061301 Phys. Rev. Lett.124 061301 [1909.11678] · doi:10.1103/PhysRevLett.124.061301
[23] A. Chambers and A. Rajantie, 2008 Lattice calculation of non-Gaussianity from preheating, https://doi.org/10.1103/PhysRevLett.100.041302 Phys. Rev. Lett.100 041302 [Erratum ibid 101 (2008) 149903] [0710.4133] · doi:10.1103/PhysRevLett.100.041302
[24] J.R. Bond, A.V. Frolov, Z. Huang and L. Kofman, 2009 Non-Gaussian spikes from chaotic billiards in inflation preheating, https://doi.org/10.1103/PhysRevLett.103.071301 Phys. Rev. Lett.103 071301 [0903.3407] · doi:10.1103/PhysRevLett.103.071301
[25] S.V. Imrith, D.J. Mulryne and A. Rajantie, 2019 Primordial curvature perturbation from lattice simulations, https://doi.org/10.1103/PhysRevD.100.043543 Phys. Rev. D 100 043543 [1903.07487] · doi:10.1103/PhysRevD.100.043543
[26] S.Y. Khlebnikov and I.I. Tkachev, 1997 Relic gravitational waves produced after preheating, https://doi.org/10.1103/PhysRevD.56.653 Phys. Rev. D 56 653 [hep-ph/9701423] · doi:10.1103/PhysRevD.56.653
[27] R. Easther and E.A. Lim, 2006 Stochastic gravitational wave production after inflation J. Cosmol. Astropart. Phys.2006 04 010 [astro-ph/0601617]
[28] J.-F. Dufaux, D.G. Figueroa and J. García-Bellido, 2010 Gravitational waves from Abelian gauge fields and cosmic strings at preheating, https://doi.org/10.1103/PhysRevD.82.083518 Phys. Rev. D 82 083518 [1006.0217] · doi:10.1103/PhysRevD.82.083518
[29] K.D. Lozanov and M.A. Amin, 2019 Gravitational perturbations from oscillons and transients after inflation, https://doi.org/10.1103/PhysRevD.99.123504 Phys. Rev. D 99 123504 [1902.06736] · doi:10.1103/PhysRevD.99.123504
[30] P. Adshead, J.T. Giblin, M. Pieroni and Z.J. Weiner, Constraining axion inflation with gravitational waves from preheating, [1909.12842]
[31] P. Adshead, J.T. Giblin, M. Pieroni and Z.J. Weiner, Constraining axion inflation with gravitational waves across 29 decades in frequency, [1909.12843]
[32] S.-Y. Zhou, E.J. Copeland, R. Easther, H. Finkel, Z.-G. Mou and P.M. Saffin, 2013 Gravitational waves from oscillon preheating J. High Energy Phys. JHEP10(2013)026 [1304.6094] · Zbl 1342.83065 · doi:10.1007/JHEP10(2013)026
[33] S. Antusch, F. Cefala and S. Orani, 2017 Gravitational waves from oscillons after inflation, https://doi.org/10.1103/PhysRevLett.118.011303 Phys. Rev. Lett.118 011303 [https://doi.org/10.1103/PhysRevLett.120.219901Erratum ibid 120 (2018) 219901] [1607.01314] · doi:10.1103/PhysRevLett.118.011303
[34] S. Antusch, F. Cefala, S. Krippendorf, F. Muia, S. Orani and F. Quevedo, 2018 Oscillons from string moduli J. High Energy Phys. JHEP01(2018)083 [1708.08922] · Zbl 1384.83048 · doi:10.1007/JHEP01(2018)083
[35] S. Antusch, F. Cefala and S. Orani, 2018 What can we learn from the stochastic gravitational wave background produced by oscillons? J. Cosmol. Astropart. Phys.2018 03 032 [1712.03231] · Zbl 1530.83013
[36] J. Liu, Z.-K. Guo, R.-G. Cai and G. Shiu, 2019 Gravitational wave production after inflation with cuspy potentials, https://doi.org/10.1103/PhysRevD.99.103506 Phys. Rev. D 99 103506 [1812.09235] · doi:10.1103/PhysRevD.99.103506
[37] R. Easther, J.T. Giblin, Jr. and E.A. Lim, 2007 Gravitational wave production at the end of inflation, https://doi.org/10.1103/PhysRevLett.99.221301 Phys. Rev. Lett.99 221301 [astro-ph/0612294] · doi:10.1103/PhysRevLett.99.221301
[38] J. García-Bellido, D.G. Figueroa and A. Sastre, 2008 A gravitational wave background from reheating after hybrid inflation, https://doi.org/10.1103/PhysRevD.77.043517 Phys. Rev. D 77 043517 [0707.0839] · doi:10.1103/PhysRevD.77.043517
[39] J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman and J.-P. Uzan, 2007 Theory and numerics of gravitational waves from preheating after inflation, https://doi.org/10.1103/PhysRevD.76.123517 Phys. Rev. D 76 123517 [0707.0875] · doi:10.1103/PhysRevD.76.123517
[40] J.-F. Dufaux, G. Felder, L. Kofman and O. Navros, 2009 Gravity waves from tachyonic preheating after hybrid inflation J. Cosmol. Astropart. Phys.2009 03 001 [0812.2917]
[41] N. Bartolo et al., 2016 Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves J. Cosmol. Astropart. Phys.2016 12 026 [1610.06481]
[42] D.G. Figueroa and F. Torrenti, 2017 Gravitational wave production from preheating: parameter dependence J. Cosmol. Astropart. Phys.2017 10 057 [1707.04533]
[43] C. Caprini and D.G. Figueroa, 2018 Cosmological backgrounds of gravitational waves, https://doi.org/10.1088/1361-6382/aac608 Class. Quant. Grav.35 163001 [1801.04268] · Zbl 1409.83039 · doi:10.1088/1361-6382/aac608
[44] N. Bartolo et al., 2018 Probing non-Gaussian stochastic gravitational wave backgrounds with LISA J. Cosmol. Astropart. Phys.2018 11 034 [1806.02819] · Zbl 1527.83023
[45] C. Armendariz-Picon, 2019 On the expected production of gravitational waves during preheating J. Cosmol. Astropart. Phys.2019 08 012 [1905.05724] · Zbl 1541.83109
[46] M. Khlopov, B.A. Malomed and I.B. Zeldovich, 1985 Gravitational instability of scalar fields and formation of primordial black holes, https://doi.org/10.1093/mnras/215.4.575 Mon. Not. Roy. Astron. Soc.215 575 · doi:10.1093/mnras/215.4.575
[47] E. Cotner, A. Kusenko, M. Sasaki and V. Takhistov, 2019 Analytic description of primordial black hole formation from scalar field fragmentation J. Cosmol. Astropart. Phys.2019 10 077 [1907.10613] · Zbl 1515.83134
[48] J. Martin, T. Papanikolaou and V. Vennin, 2020 Primordial black holes from the preheating instability in single-field inflation J. Cosmol. Astropart. Phys.2020 01 024 [1907.04236]
[49] J. García-Bellido, A.D. Linde and D. Wands, 1996 Density perturbations and black hole formation in hybrid inflation, https://doi.org/10.1103/PhysRevD.54.6040 Phys. Rev. D 54 6040 [astro-ph/9605094] · doi:10.1103/PhysRevD.54.6040
[50] A.M. Green and K.A. Malik, 2001 Primordial black hole production due to preheating, https://doi.org/10.1103/PhysRevD.64.021301 Phys. Rev. D 64 021301 [hep-ph/0008113] · doi:10.1103/PhysRevD.64.021301
[51] J.C. Hidalgo, L.A. Urena-Lopez and A.R. Liddle, 2012 Unification models with reheating via primordial black holes, https://doi.org/10.1103/PhysRevD.85.044055 Phys. Rev. D 85 044055 [1107.5669] · doi:10.1103/PhysRevD.85.044055
[52] E. Torres-Lomas, J.C. Hidalgo, K.A. Malik and L.A. Ureña-López, 2014 Formation of subhorizon black holes from preheating, https://doi.org/10.1103/PhysRevD.89.083008 Phys. Rev. D 89 083008 [1401.6960] · doi:10.1103/PhysRevD.89.083008
[53] T. Suyama, T. Tanaka, B. Bassett and H. Kudoh, 2005 Are black holes over-produced during preheating?, https://doi.org/10.1103/PhysRevD.71.063507 Phys. Rev. D 71 063507 [hep-ph/0410247] · doi:10.1103/PhysRevD.71.063507
[54] T. Suyama, T. Tanaka, B. Bassett and H. Kudoh, 2006 Black hole production in tachyonic preheating J. Cosmol. Astropart. Phys.2006 04 001 [hep-ph/0601108]
[55] E. Cotner, A. Kusenko and V. Takhistov, 2018 Primordial black holes from inflaton fragmentation into oscillons, https://doi.org/10.1103/PhysRevD.98.083513 Phys. Rev. D 98 083513 [1801.03321] · doi:10.1103/PhysRevD.98.083513
[56] M.A.G. Garcia and M.A. Amin, 2018 Prethermalization production of dark matter, https://doi.org/10.1103/PhysRevD.98.103504 Phys. Rev. D 98 103504 [1806.01865] · doi:10.1103/PhysRevD.98.103504
[57] K.D. Lozanov and M.A. Amin, 2014 End of inflation, oscillons and matter-antimatter asymmetry, https://doi.org/10.1103/PhysRevD.90.083528 Phys. Rev. D 90 083528 [1408.1811] · doi:10.1103/PhysRevD.90.083528
[58] M.P. Hertzberg and J. Karouby, 2014 Baryogenesis from the inflaton field, https://doi.org/10.1016/j.physletb.2014.08.021 Phys. Lett. B 737 34 [1309.0007] · doi:10.1016/j.physletb.2014.08.021
[59] K. Enqvist and J. McDonald, 1998 Q balls and baryogenesis in the MSSM, https://doi.org/10.1016/S0370-2693(98)00271-8 Phys. Lett. B 425 309 [hep-ph/9711514] · doi:10.1016/S0370-2693(98)00271-8
[60] M. Hindmarsh and A. Rajantie, 2001 Phase transition dynamics in the hot Abelian Higgs model, https://doi.org/10.1103/PhysRevD.64.065016 Phys. Rev. D 64 065016 [hep-ph/0103311] · doi:10.1103/PhysRevD.64.065016
[61] J.T. Giblin, G. Kane, E. Nesbit, S. Watson and Y. Zhao, 2017 Was the universe actually radiation dominated prior to nucleosynthesis?, https://doi.org/10.1103/PhysRevD.96.043525 Phys. Rev. D 96 043525 [1706.08536] · doi:10.1103/PhysRevD.96.043525
[62] M.A. Amin, J. Fan, K.D. Lozanov and M. Reece, 2019 Cosmological dynamics of Higgs potential fine tuning, https://doi.org/10.1103/PhysRevD.99.035008 Phys. Rev. D 99 035008 [1802.00444] · doi:10.1103/PhysRevD.99.035008
[63] E.W. Kolb and I.I. Tkachev, 1994 Nonlinear axion dynamics and formation of cosmological pseudosolitons, https://doi.org/10.1103/PhysRevD.49.5040 Phys. Rev. D 49 5040 [astro-ph/9311037] · doi:10.1103/PhysRevD.49.5040
[64] N. Kitajima, J. Soda and Y. Urakawa, 2018 Gravitational wave forest from string axiverse J. Cosmol. Astropart. Phys.2018 10 008 [1807.07037] · Zbl 1536.83006
[65] M. Buschmann, J.W. Foster and B.R. Safdi, Early-universe simulations of the cosmological axion, [1906.00967]
[66] H. Fukunaga, N. Kitajima and Y. Urakawa, 2019 Efficient self-resonance instability from axions J. Cosmol. Astropart. Phys.2019 06 055 [1903.02119]
[67] T. Patel, H. Tashiro and Y. Urakawa, 2020 Resonant magnetogenesis from axions J. Cosmol. Astropart. Phys.2020 01 043 [1909.00288] · Zbl 1489.83084
[68] T.L. Smith, V. Poulin and M.A. Amin, Oscillating scalar fields and the Hubble tension: a resolution with novel signatures, [1908.06995]
[69] S. Yu. Khlebnikov and I.I. Tkachev, 1996 Classical decay of inflaton, https://doi.org/10.1103/PhysRevLett.77.219 Phys. Rev. Lett.77 219 [hep-ph/9603378] · doi:10.1103/PhysRevLett.77.219
[70] T. Prokopec and T.G. Roos, 1997 Lattice study of classical inflaton decay, https://doi.org/10.1103/PhysRevD.55.3768 Phys. Rev. D 55 3768 [hep-ph/9610400] · doi:10.1103/PhysRevD.55.3768
[71] G.N. Felder and I. Tkachev, 2008 LATTICEEASY: a program for lattice simulations of scalar fields in an expanding universe, https://doi.org/10.1016/j.cpc.2008.02.009 Comput. Phys. Commun.178 929 [hep-ph/0011159] · Zbl 1196.83005 · doi:10.1016/j.cpc.2008.02.009
[72] A.V. Frolov, 2008 DEFROST: a new code for simulating preheating after inflation J. Cosmol. Astropart. Phys.2008 11 009 [0809.4904]
[73] Z. Huang, 2011 The art of lattice and gravity waves from preheating, https://doi.org/10.1103/PhysRevD.83.123509 Phys. Rev. D 83 123509 [1102.0227] · doi:10.1103/PhysRevD.83.123509
[74] J. Sainio, 2012 PyCOOL — a Cosmological Object-Oriented Lattice code written in Python J. Cosmol. Astropart. Phys.2012 04 038 [1201.5029]
[75] H.L. Child, J.T. Giblin, Jr, R.H. Ribeiro and D. Seery, 2013 Preheating with non-minimal kinetic terms, https://doi.org/10.1103/PhysRevLett.111.051301 Phys. Rev. Lett.111 051301 [1305.0561] · doi:10.1103/PhysRevLett.111.051301
[76] R. Easther, H. Finkel and N. Roth, 2010 PSpectRe: a pseudo-spectral code for (p)reheating J. Cosmol. Astropart. Phys.2010 10 025 [1005.1921]
[77] M.A. Amin et al., 2018 Gravitational waves from asymmetric oscillon dynamics?, https://doi.org/10.1103/PhysRevD.98.024040 Phys. Rev. D 98 024040 [1803.08047] · doi:10.1103/PhysRevD.98.024040
[78] J.T. Giblin and A.J. Tishue, 2019 Preheating in full general relativity, https://doi.org/10.1103/PhysRevD.100.063543 Phys. Rev. D 100 063543 [1907.10601] · doi:10.1103/PhysRevD.100.063543
[79] J. Rubio and E.S. Tomberg, 2019 Preheating in Palatini Higgs inflation J. Cosmol. Astropart. Phys.2019 04 021 [1902.10148] · Zbl 1542.83027
[80] R. Nguyen, J. van de Vis, E.I. Sfakianakis, J.T. Giblin and D.I. Kaiser, 2019 Nonlinear dynamics of preheating after multifield inflation with nonminimal couplings, https://doi.org/10.1103/PhysRevLett.123.171301 Phys. Rev. Lett.123 171301 [1905.12562] · doi:10.1103/PhysRevLett.123.171301
[81] J.A. Crespo and H.P. de Oliveira, 2019 Aspects of wave turbulence in preheating. Part II. Rebirth of the nonminimal coupled models J. Cosmol. Astropart. Phys.2019 12 045 [1905.13647] · Zbl 1543.83191
[82] J.A. Crespo and H.P. de Oliveira, Aspects of wave turbulence in preheating. Part III. The case of the two-fields models, [1906.00802] · Zbl 1457.83082
[83] H.-Y. Schive, T. Chiueh and T. Broadhurst, 2014 Cosmic structure as the quantum interference of a coherent dark wave, https://doi.org/10.1038/nphys2996 Nature Phys.10 496 [1406.6586] · doi:10.1038/nphys2996
[84] B. Schwabe, J.C. Niemeyer and J.F. Engels, 2016 Simulations of solitonic core mergers in ultralight axion dark matter cosmologies, https://doi.org/10.1103/PhysRevD.94.043513 Phys. Rev. D 94 043513 [1606.05151] · doi:10.1103/PhysRevD.94.043513
[85] F. Edwards, E. Kendall, S. Hotchkiss and R. Easther, 2018 PyUltraLight: a pseudo-spectral solver for ultralight dark matter dynamics J. Cosmol. Astropart. Phys.2018 10 027 [1807.04037]
[86] P. Adshead, J.T. Giblin, T.R. Scully and E.I. Sfakianakis, 2015 Gauge-preheating and the end of axion inflation J. Cosmol. Astropart. Phys.2015 12 034 [1502.06506]
[87] P. Adshead, J.T. Giblin, T.R. Scully and E.I. Sfakianakis, 2016 Magnetogenesis from axion inflation J. Cosmol. Astropart. Phys.2016 10 039 [1606.08474]
[88] P. Adshead, J.T. Giblin and Z.J. Weiner, 2018 Gravitational waves from gauge preheating, https://doi.org/10.1103/PhysRevD.98.043525 Phys. Rev. D 98 043525 [1805.04550] · doi:10.1103/PhysRevD.98.043525
[89] J.R.C. Cuissa and D.G. Figueroa, 2019 Lattice formulation of axion inflation. Application to preheating J. Cosmol. Astropart. Phys.2019 06 002 [1812.03132] · Zbl 1481.83099
[90] D.G. Figueroa and M. Shaposhnikov, 2018 Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field, https://doi.org/10.1016/j.nuclphysb.2017.12.001 Nucl. Phys. B 926 544 [1705.09629] · Zbl 1380.81440 · doi:10.1016/j.nuclphysb.2017.12.001
[91] D.G. Figueroa, A. Florio and M. Shaposhnikov, 2019 Chiral charge dynamics in Abelian gauge theories at finite temperature J. High Energy Phys. JHEP10(2019)142 [1904.11892] · doi:10.1007/JHEP10(2019)142
[92] J. Braden, L. Kofman and N. Barnaby, 2010 Reheating the universe after multi-field inflation J. Cosmol. Astropart. Phys.2010 07 016 [1005.2196]
[93] J.T. Deskins, J.T. Giblin and R.R. Caldwell, 2013 Gauge field preheating at the end of inflation, https://doi.org/10.1103/PhysRevD.88.063530 Phys. Rev. D 88 063530 [1305.7226] · doi:10.1103/PhysRevD.88.063530
[94] P. Adshead, J.T. Giblin and Z.J. Weiner, 2017 Non-Abelian gauge preheating, https://doi.org/10.1103/PhysRevD.96.123512 Phys. Rev. D 96 123512 [1708.02944] · doi:10.1103/PhysRevD.96.123512
[95] J. Smit, P. Goddard and J. Yeomans, 2002 Introduction to quantum fields on a lattice, Cambridge Lecture Notes in Physics, Cambridge University Press, Cambridge, U.K. · Zbl 1021.81043 · doi:10.1017/CBO9780511583971
[96] A. Rajantie and E.J. Copeland, 2000 Phase transitions from preheating in gauge theories, https://doi.org/10.1103/PhysRevLett.85.916 Phys. Rev. Lett.85 916 [hep-ph/0003025] · doi:10.1103/PhysRevLett.85.916
[97] D.G. Figueroa, J. García-Bellido and F. Torrenti, 2015 Decay of the Standard Model Higgs field after inflation, https://doi.org/10.1103/PhysRevD.92.083511 Phys. Rev. D 92 083511 [1504.04600] · doi:10.1103/PhysRevD.92.083511
[98] D.G. Figueroa, J. García-Bellido and F. Torrentí, 2016 Gravitational wave production from the decay of the Standard Model Higgs field after inflation, https://doi.org/10.1103/PhysRevD.93.103521 Phys. Rev. D 93 103521 [1602.03085] · doi:10.1103/PhysRevD.93.103521
[99] D.G. Figueroa and C.T. Byrnes, 2017 The Standard Model Higgs as the origin of the hot big bang, https://doi.org/10.1016/j.physletb.2017.01.059 Phys. Lett. B 767 272 [1604.03905] · doi:10.1016/j.physletb.2017.01.059
[100] J. García-Bellido, M. Garcia-Perez and A. Gonzalez-Arroyo, 2004 Chern-Simons production during preheating in hybrid inflation models, https://doi.org/10.1103/PhysRevD.69.023504 Phys. Rev. D 69 023504 [hep-ph/0304285] · doi:10.1103/PhysRevD.69.023504
[101] N. Graham, 2007 An electroweak oscillon, https://doi.org/10.1103/PhysRevLett.98.101801 Phys. Rev. Lett.98 101801 [Erratum ibid 98 (2007) 189904] [hep-th/0610267] · doi:10.1103/PhysRevLett.98.101801
[102] A. Diaz-Gil, J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, 2008 Magnetic field production during preheating at the electroweak scale, https://doi.org/10.1103/PhysRevLett.100.241301 Phys. Rev. Lett.100 241301 [0712.4263] · doi:10.1103/PhysRevLett.100.241301
[103] N. Graham, 2007 Numerical simulation of an electroweak oscillon, https://doi.org/10.1103/PhysRevD.76.085017 Phys. Rev. D 76 085017 [0706.4125] · doi:10.1103/PhysRevD.76.085017
[104] A. Diaz-Gil, J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, 2008 Primordial magnetic fields from preheating at the electroweak scale J. High Energy Phys. JHEP07(2008)043 [0805.4159]
[105] K. Enqvist, S. Nurmi, S. Rusak and D. Weir, 2016 Lattice calculation of the decay of primordial Higgs condensate J. Cosmol. Astropart. Phys.2016 02 057 [1506.06895]
[106] Z.-G. Mou, P.M. Saffin and A. Tranberg, 2017 Simulations of cold electroweak baryogenesis: hypercharge U(1) and the creation of helical magnetic fields J. High Energy Phys. JHEP06(2017)075 [1704.08888] · Zbl 1380.85019 · doi:10.1007/JHEP06(2017)075
[107] A. Tranberg, S. Tähtinen and D.J. Weir, 2018 Gravitational waves from non-Abelian gauge fields at a tachyonic transition J. Cosmol. Astropart. Phys.2018 04 012 [1706.02365] · Zbl 1536.83205
[108] H. Yoshida, 1990 Construction of higher order symplectic integrators, https://doi.org/10.1016/0375-9601(90)90092-3 Phys. Lett. A 150 262 · doi:10.1016/0375-9601(90)90092-3
[109] T. Krajewski, K. Turzyński and M. Wieczorek, 2019 On preheating in α-attractor models of inflation, https://doi.org/10.1140/epjc/s10052-019-7155-z Eur. Phys. J. C 79 654 [1801.01786] · doi:10.1140/epjc/s10052-019-7155-z
[110] E.J. Weinberg, 2012 Classical solutions in quantum field theory, https://doi.org/10.1017/cbo9781139017787Cambridge University Press, Cambridge, U.K. · Zbl 1264.81009 · doi:10.1017/CBO9781139017787
[111] A.D. Linde, 1984 The inflationary universe, https://doi.org/10.1088/0034-4885/47/8/002 Rept. Prog. Phys.47 925 · doi:10.1088/0034-4885/47/8/002
[112] A.D. Linde, 1990 Particle physics and inflationary cosmology Contemp Concepts Phys.5 1 [hep-th/0503203]
[113] Planck collaboration, Planck 2018 results. X. Constraints on inflation, [1807.06211]
[114] K.D. Lozanov and M.A. Amin, 2016 The charged inflaton and its gauge fields: preheating and initial conditions for reheating J. Cosmol. Astropart. Phys.2016 06 032 [1603.05663]
[115] S. Yu. Khlebnikov and I.I. Tkachev, 1996 Classical decay of inflaton, https://doi.org/10.1103/PhysRevLett.77.219 Phys. Rev. Lett.77 219 [hep-ph/9603378] · doi:10.1103/PhysRevLett.77.219
[116] M.S. Turner, 1983 Coherent scalar field oscillations in an expanding universe, https://doi.org/10.1103/PhysRevD.28.1243 Phys. Rev. D 28 1243 · doi:10.1103/PhysRevD.28.1243
[117] H.B. Nielsen and P. Olesen, 1973 Vortex line models for dual strings, https://doi.org/10.1016/0550-3213(73)90350-7 Nucl. Phys. B 61 45 · doi:10.1016/0550-3213(73)90350-7
[118] A. Vilenkin and E.P.S. Shellard, 2000 Cosmic strings and other topological defects, Cambridge University Press, Cambridge, U.K. · Zbl 0978.83052
[119] A. Drew and E.P.S. Shellard, Radiation from global topological strings using adaptive mesh refinement: methodology and massless modes, [1910.01718]
[120] G.N. Felder, L. Kofman and A.D. Linde, 2001 Tachyonic instability and dynamics of spontaneous symmetry breaking, https://doi.org/10.1103/PhysRevD.64.123517 Phys. Rev. D 64 123517 [hep-th/0106179] · doi:10.1103/PhysRevD.64.123517
[121] I. Tkachev, S. Khlebnikov, L. Kofman and A.D. Linde, 1998 Cosmic strings from preheating, https://doi.org/10.1016/S0370-2693(98)01094-6 Phys. Lett. B 440 262 [hep-ph/9805209] · doi:10.1016/S0370-2693(98)01094-6
[122] S. Kasuya and M. Kawasaki, 1997 Can topological defects be formed during preheating?, https://doi.org/10.1103/PhysRevD.56.7597 Phys. Rev. D 56 7597 [hep-ph/9703354] · doi:10.1103/PhysRevD.56.7597
[123] D. Matsunami, L. Pogosian, A. Saurabh and T. Vachaspati, 2019 Decay of cosmic string loops due to particle radiation, https://doi.org/10.1103/PhysRevLett.122.201301 Phys. Rev. Lett.122 201301 [1903.05102] · doi:10.1103/PhysRevLett.122.201301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.