×

Perturbations in tachyon dark energy and their effect on matter clustering. (English) Zbl 1491.83025


MSC:

83C56 Dark matter and dark energy
30D40 Cluster sets, prime ends, boundary behavior
62H30 Classification and discrimination; cluster analysis (statistical aspects)
35B20 Perturbations in context of PDEs
58J47 Propagation of singularities; initial value problems on manifolds
31C12 Potential theory on Riemannian manifolds and other spaces
83E05 Geometrodynamics and the holographic principle

References:

[1] Supernova Cosmology Project collaboration, 2012 The Hubble Space Telescope Cluster Supernova Survey: V. improving the dark energy constraints above z > 1 and building an early-type-hosted supernova sample, https://doi.org/10.1088/0004-637X/746/1/85 Astrophys. J.746 85 [1105.3470] · doi:10.1088/0004-637X/746/1/85
[2] Supernova Cosmology Project collaboration, 1997 Measurements of the cosmological parameters Ω and Λ from the first 7 supernovae at z≥0.35, https://doi.org/10.1086/304265 Astrophys. J.483 565 [astro-ph/9608192] · doi:10.1086/304265
[3] Supernova Cosmology Project collaboration, 1999 Measurements of Ω and Λ from 42 high redshift supernovae, https://doi.org/10.1086/307221 Astrophys. J.517 565 [astro-ph/9812133] · Zbl 1368.85002 · doi:10.1086/307221
[4] Supernova Search Team collaboration, 1998 Observational evidence from supernovae for an accelerating universe and a cosmological constant, https://doi.org/10.1086/300499 Astron. J.116 1009 [astro-ph/9805201] · doi:10.1086/300499
[5] H.-J. Seo and D.J. Eisenstein, 2003 Probing dark energy with baryonic acoustic oscillations from future large galaxy redshift surveys, https://doi.org/10.1086/379122 Astrophys. J.598 720 [astro-ph/0307460] · doi:10.1086/379122
[6] W.J. Percival et al., 2007 The shape of the SDSS DR5 galaxy power spectrum, https://doi.org/10.1086/510615 Astrophys. J.657 645 [astro-ph/0608636] · doi:10.1086/510615
[7] N.G. Busca et al., 2013 Baryon acoustic oscillations in the lyest of boss quasars, https://doi.org/10.1051/0004-6361/201220724 Astron. Astrophys.552 A96 · doi:10.1051/0004-6361/201220724
[8] C. Blake et al., 2012The wigglez dark energy survey: joint measurements of the expansion and growth history at z < 1, https://doi.org/10.1111/j.1365-2966.2012.21473.x Mon. Not. Roy. Astron. Soc.425 405 · doi:10.1111/j.1365-2966.2012.21473.x
[9] Planck collaboration, 2014 Planck 2013 results. I. Overview of products and scientific results, https://doi.org/10.1051/0004-6361/201321529 Astron. Astrophys.571 A1 [1303.5062] · doi:10.1051/0004-6361/201321529
[10] Planck collaboration, 2016 Planck 2015 results — XIII. Cosmological parameters, https://doi.org/10.1051/0004-6361/201525830 Astron. Astrophys.594 A13 · doi:10.1051/0004-6361/201525830
[11] S.M. Carroll, W.H. Press and E.L. Turner, 1992 The cosmological constant, https://doi.org/10.1146/annurev.aa.30.090192.002435 Annu. Rev. Astron. Astrophys.30 499 · doi:10.1146/annurev.aa.30.090192.002435
[12] S.M. Carroll, 2001 The cosmological constant, https://doi.org/10.12942/lrr-2001-1 Living Rev. Rel.4 1 [astro-ph/0004075] · Zbl 1023.83022 · doi:10.12942/lrr-2001-1
[13] S. Weinberg, 1989 The cosmological constant problem, https://doi.org/10.1103/RevModPhys.61.1 Rev. Mod. Phys.61 1 · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[14] T. Padmanabhan, 2003 Cosmological constant: the weight of the vacuum, https://doi.org/10.1016/S0370-1573(03)00120-0 Phys. Rept.380 235 [hep-th/0212290] · Zbl 1027.83544 · doi:10.1016/S0370-1573(03)00120-0
[15] P.J.E. Peebles and B. Ratra, 2003 The cosmological constant and dark energy, https://doi.org/10.1103/RevModPhys.75.559 Rev. Mod. Phys.75 559 [astro-ph/0207347] · Zbl 1205.83082 · doi:10.1103/RevModPhys.75.559
[16] H.K. Jassal, J.S. Bagla and T. Padmanabhan, 2005 Observational constraints on low redshift evolution of dark energy: how consistent are different observations?, https://doi.org/10.1103/PhysRevD.72.103503 Phys. Rev. D 72 103503 [astro-ph/0506748] · doi:10.1103/PhysRevD.72.103503
[17] G. Efstathiou, 1999 Constraining the equation of state of the universe from distant type Ia supernovae and cosmic microwave background anisotropies, https://doi.org/10.1046/j.1365-8711.1999.02997.x Mon. Not. Roy. Astron. Soc.310 842 · doi:10.1046/j.1365-8711.1999.02997.x
[18] S. Lee, 2005 Constraints on the dark energy equation of state from the separation of CMB peaks and the evolution of alpha, https://doi.org/10.1103/PhysRevD.71.123528 Phys. Rev. D 71 123528 [astro-ph/0504650] · doi:10.1103/PhysRevD.71.123528
[19] A. Tripathi, A. Sangwan and H.K. Jassal, 2017 Dark energy equation of state parameter and its evolution at low redshift J. Cosmol. Astropart. Phys.2017 06 012 [1611.01899] · Zbl 1515.83457
[20] A. Sangwan, A. Mukherjee and H.K. Jassal, 2018 Reconstructing the dark energy potential J. Cosmol. Astropart. Phys.2018 01 018 [1712.05143]
[21] W. Zheng and H. Li, 2017 Constraints on parameterized dark energy properties from new observations with principal component analysis, https://doi.org/10.1016/j.astropartphys.2016.10.005 Astropart. Phys.86 1 · doi:10.1016/j.astropartphys.2016.10.005
[22] M. Rezaei et al., 2017 Constraints to Dark Energy Using PADE Parameterizations, https://doi.org/10.3847/1538-4357/aa7898 Astrophys. J.843 65 [1706.02537] · doi:10.3847/1538-4357/aa7898
[23] W. Yang, S. Pan and A. Paliathanasis, 2018 Latest astronomical constraints on some non-linear parametric dark energy models, https://doi.org/10.1093/mnras/sty019 Mon. Not. Roy. Astron. Soc.475 2605 [1708.01717] · doi:10.1093/mnras/sty019
[24] B. Ratra and P.J.E. Peebles, 1988 Cosmological consequences of a rolling homogeneous scalar field, https://doi.org/10.1103/PhysRevD.37.3406 Phys. Rev. D 37 3406 · doi:10.1103/PhysRevD.37.3406
[25] E.V. Linder, 2008 The dynamics of quintessence, the quintessence of dynamics, https://doi.org/10.1007/s10714-007-0550-z Gen. Rel. Grav.40 329 [0704.2064] · Zbl 1137.83381 · doi:10.1007/s10714-007-0550-z
[26] D. Huterer and H.V. Peiris, 2007 Dynamical behavior of generic quintessence potentials: Constraints on key dark energy observables, https://doi.org/10.1103/PhysRevD.75.083503 Phys. Rev. D 75 083503 [astro-ph/0610427] · doi:10.1103/PhysRevD.75.083503
[27] I. Zlatev, L.-M. Wang and P.J. Steinhardt, 1999 Quintessence, cosmic coincidence and the cosmological constant, https://doi.org/10.1103/PhysRevLett.82.896 Phys. Rev. Lett.82 896 [astro-ph/9807002] · doi:10.1103/PhysRevLett.82.896
[28] E.J. Copeland, A.R. Liddle and D. Wands, 1998 Exponential potentials and cosmological scaling solutions, https://doi.org/10.1103/PhysRevD.57.4686 Phys. Rev. D 57 4686 [gr-qc/9711068] · doi:10.1103/PhysRevD.57.4686
[29] A. Sangwan, A. Tripathi and H.K. Jassal, Observational constraints on quintessence models of dark energy, [1804.09350]
[30] C.R. Watson and R.J. Scherrer, 2003 The evolution of inverse power law quintessence at low redshift, https://doi.org/10.1103/PhysRevD.68.123524 Phys. Rev. D 68 123524 [astro-ph/0306364] · doi:10.1103/PhysRevD.68.123524
[31] R.J. Scherrer and A.A. Sen, 2008 Thawing quintessence with a nearly flat potential, https://doi.org/10.1103/PhysRevD.77.083515 Phys. Rev. D 77 083515 [0712.3450] · doi:10.1103/PhysRevD.77.083515
[32] S. Unnikrishnan, H.K. Jassal and T.R. Seshadri, 2008 Scalar field dark energy perturbations and their scale dependence, https://doi.org/10.1103/PhysRevD.78.123504 Phys. Rev. D 78 123504 [0801.2017] · doi:10.1103/PhysRevD.78.123504
[33] H.K. Jassal, 2009 A comparison of perturbations in fluid and scalar field models of dark energy, https://doi.org/10.1103/PhysRevD.79.127301 Phys. Rev. D 79 127301 [0903.5370] · doi:10.1103/PhysRevD.79.127301
[34] H.K. Jassal, 2010 Evolution of perturbations in distinct classes of canonical scalar field models of dark energy, https://doi.org/10.1103/PhysRevD.81.083513 Phys. Rev. D 81 083513 [0910.1906] · doi:10.1103/PhysRevD.81.083513
[35] H.K. Jassal, 2012 Scalar field dark energy perturbations and the Integrated Sachs Wolfe effect, https://doi.org/10.1103/PhysRevD.86.043528 Phys. Rev. D 86 043528 [1203.5171] · doi:10.1103/PhysRevD.86.043528
[36] A. Sen, 2002 Rolling tachyon J. High Energy Phys. JHEP04(2002)048 [hep-th/0203211].
[37] A. Sen, 2002 Tachyon matter J. High Energy Phys. JHEP07(2002)065 [hep-th/0203265]
[38] A. Sen, 2002 Field theory of tachyon matter, https://doi.org/10.1142/S0217732302008071 Mod. Phys. Lett. A 17 1797 [hep-th/0204143] · Zbl 1083.81578 · doi:10.1142/S0217732302008071
[39] J.S. Bagla, H.K. Jassal and T. Padmanabhan, 2003 Cosmology with tachyon field as dark energy, https://doi.org/10.1103/PhysRevD.67.063504 Phys. Rev. D 67 063504 [astro-ph/0212198] · doi:10.1103/PhysRevD.67.063504
[40] T. Padmanabhan, 2002 Accelerated expansion of the universe driven by tachyonic matter, https://doi.org/10.1103/PhysRevD.66.021301 Phys. Rev. D 66 021301 [hep-th/0204150] · doi:10.1103/PhysRevD.66.021301
[41] G. Calcagni and A.R. Liddle, 2006 Tachyon dark energy models: dynamics and constraints, https://doi.org/10.1103/PhysRevD.74.043528 Phys. Rev. D 74 043528 [astro-ph/0606003] · doi:10.1103/PhysRevD.74.043528
[42] M. Fairbairn and M.H.G. Tytgat, 2002 Inflation from a tachyon fluid?, https://doi.org/10.1016/S0370-2693(02)02638-2 Phys. Lett. B 546 1 [hep-th/0204070] · Zbl 0998.83514 · doi:10.1016/S0370-2693(02)02638-2
[43] L. Kofman and A. Linde, 2002 Problems with tachyon inflation J. High Energy Phys. JHEP07(2002)004
[44] A. FEinstein, 2002 Power law inflation from the rolling tachyon, https://doi.org/10.1103/PhysRevD.66.063511 Phys. Rev. D 66 063511 [hep-th/0204140] · doi:10.1103/PhysRevD.66.063511
[45] K. Rezazadeh, K. Karami and S. Hashemi, 2017 Tachyon inflation with steep potentials, https://doi.org/10.1103/PhysRevD.95.103506 Phys. Rev. D 95 103506 [1508.04760] · doi:10.1103/PhysRevD.95.103506
[46] N. Barbosa-Cendejas et al., 2015 Tachyon inflation in the large-n formalism J. Cosmol. Astropart. Phys.2015 11 020 [1506.09172]
[47] Q. Fei, Y. Gong, J. Lin and Z. Yi, 2017 The reconstruction of tachyon inflationary potentials J. Cosmol. Astropart. Phys.2017 08 018 [1705.02545] · Zbl 1515.83342
[48] Q. Gao, Y. Gong and Q. Fei, 2018 Constant-roll tachyon inflation and observational constraints J. Cosmol. Astropart. Phys.2018 05 005 [1801.09208] · Zbl 1536.83174
[49] N. Barbosa-Cendejas et al., 2018 Theoretical and observational constraints on tachyon inflation J. Cosmol. Astropart. Phys.2018 03 015 [1711.06693]
[50] T. Padmanabhan and T.R. Choudhury, 2002 Can the clustered dark matter and the smooth dark energy arise from the same scalar field?, https://doi.org/10.1103/PhysRevD.66.081301 Phys. Rev. D 66 081301 [hep-th/0205055] · doi:10.1103/PhysRevD.66.081301
[51] S. Sugimoto and S. Terashima, 2002 Tachyon matter in boundary string field theory J. High Energy Phys. JHEP07(2002)025 [hep-th/0205085]
[52] A. Das and A. DeBenedictis, 2004 Inhomogeneous cosmologies with tachyonic dust as dark matter, https://doi.org/10.1023/B:GERG.0000035949.09056.c8 Gen. Rel. Grav.36 1741 · Zbl 1084.83039 · doi:10.1023/B:GERG.0000035949.09056.c8
[53] P.C.W. Davies, 2004 Tachyonic dark matter, https://doi.org/10.1023/B:IJTP.0000028856.08511.9b Int. J. Theor. Phys.43 141 · Zbl 1058.83542 · doi:10.1023/B:IJTP.0000028856.08511.9b
[54] M.A. Makukov, E.G. Mychelkin and V.L. Saveliev, 2016 On possible tachyonic state of neutrino dark matter, https://doi.org/10.1142/S2010194516601332 Int. J. Mod. Phys. Conf. Ser.41 1660133 · doi:10.1142/S2010194516601332
[55] A. Singh, A. Sangwan and H.K. Jassal, 2019 Low redshift observational constraints on tachyon models of dark energy J. Cosmol. Astropart. Phys.2019 04 047 [1811.07513]
[56] J. Weller and A.M. Lewis, 2003 Large-scale cosmic microwave background anisotropies and dark energy, https://doi.org/10.1111/j.1365-2966.2003.07144.x Mon. Not. Roy. Astron. Soc.346 987 · doi:10.1111/j.1365-2966.2003.07144.x
[57] R. Bean and O. Dore, 2004 Probing dark energy perturbations: The Dark energy equation of state and speed of sound as measured by WMAP, https://doi.org/10.1103/PhysRevD.69.083503 Phys. Rev. D 69 083503 [astro-ph/0307100] · doi:10.1103/PhysRevD.69.083503
[58] S. Nesseris, G. Pantazis and L. Perivolaropoulos, 2017 Tension and constraints on modified gravity parametrizations of G_eff(z) from growth rate and Planck data, https://doi.org/10.1103/PhysRevD.96.023542 Phys. Rev. D 96 023542 [1703.10538] · doi:10.1103/PhysRevD.96.023542
[59] G.-B. Zhao et al., 2019 The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights, https://doi.org/10.1093/mnras/sty2845 Mon. Not. Roy. Astron. Soc.482 3497 [1801.03043] · doi:10.1093/mnras/sty2845
[60] E.J. Copeland, M.R. Garousi, M. Sami and S. Tsujikawa, 2005 What is needed of a tachyon if it is to be the dark energy?, https://doi.org/10.1103/PhysRevD.71.043003 Phys. Rev. D 71 043003 [hep-th/0411192] · doi:10.1103/PhysRevD.71.043003
[61] J.M. Aguirregabiria and R. Lazkoz, 2004 Tracking solutions in tachyon cosmology, https://doi.org/10.1103/PhysRevD.69.123502 Phys. Rev. D 69 123502 [hep-th/0402190] · doi:10.1103/PhysRevD.69.123502
[62] B. Sagredo, S. Nesseris and D. Sapone, 2018 Internal robustness of growth rate data, https://doi.org/10.1103/PhysRevD.98.083543 Phys. Rev. D 98 083543 [1806.10822] · doi:10.1103/PhysRevD.98.083543
[63] B. L’Huillier, A. Shafieloo, D. Polarski and A.A. Starobinsky, 2020 Defying the laws of gravity I: model-independent reconstruction of the universe expansion from growth data, https://doi.org/10.1093/mnras/staa633 Mon. Not. Roy. Astron. Soc.494 819 [1906.05991] · doi:10.1093/mnras/staa633
[64] Planck collaboration, 2016 Planck 2015 results — XIII. cosmological parameters, https://doi.org/10.1051/0004-6361/201525830 Astron. Astrophys.594 A13 · doi:10.1051/0004-6361/201525830
[65] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, [1807.06209]
[66] A.R. Liddle, 2007 Information criteria for astrophysical model selection, https://doi.org/10.1111/j.1745-3933.2007.00306.x Mon. Not Roy. Astron. Soc. Lett.377 L74 · doi:10.1111/j.1745-3933.2007.00306.x
[67] R. Trotta, 2007 Applications of Bayesian model selection to cosmological parameters, https://doi.org/10.1111/j.1365-2966.2007.11738.x Mon. Not. Roy. Astron. Soc.378 72 · doi:10.1111/j.1365-2966.2007.11738.x
[68] L. Verde, 2010 Statistical methods in cosmology, https://doi.org/10.1007/978-3-642-10598-24 Lecture Notes in Physics volume 800, Springer, Germany [0911.3105] · Zbl 1204.83122 · doi:10.1007/978-3-642-10598-24
[69] H. Jeffreys, 1961 Theory of probability, Oxford University Press, Oxford U.K. · Zbl 0116.34904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.