×

Parisi-Sourlas-like dimensional reduction of quantum gravity in the presence of observers. (English) Zbl 1485.83174

Summary: We show that in the presence of disorder induced by random networks of observers measuring covariant quantities (such as scalar curvature) (3+1)-dimensional quantum gravity exhibits an effective dimensional reduction at large spatio-temporal scales, which is analogous to the Parisi-Sourlas phenomenon observed for quantum field theories in random external fields. After averaging over disorder associated with observer networks, statistical properties of the latter determine both the value of gravitational constant and the effective cosmological constant in the model. Focusing on the dynamics of infrared degrees of freedom we find that the upper critical dimension of the effective theory is lifted from \(D_{\mathrm{cr}} = 1+1\) to \(D_{\mathrm{cr}} = 3+1\) dimensions.

MSC:

83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
58J47 Propagation of singularities; initial value problems on manifolds
83E05 Geometrodynamics and the holographic principle
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
81T12 Effective quantum field theories

References:

[1] Einstein, Albert; Podolsky, Boris; Rosen, Nathan, Can quantum mechanical description of physical reality be considered complete?, Phys. Rev., 47, 777-780 (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[2] G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincare Phys. Theor.A20 (1974) 69. · Zbl 1422.83019
[3] Deser, Stanley; van Nieuwenhuizen, P., One Loop Divergences of Quantized Einstein-Maxwell Fields, Phys. Rev. D, 10, 401 (1974) · doi:10.1103/PhysRevD.10.401
[4] Solodukhin, Sergey N., Entanglement entropy of black holes, Living Rev. Rel., 14, 8 (2011) · Zbl 1320.83015 · doi:10.12942/lrr-2011-8
[5] Hawking, S. W., Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D, 14, 2460-2473 (1976) · doi:10.1103/PhysRevD.14.2460
[6] Weinberg, Steven; Hsu, Jong-Ping; Fine, D., The Cosmological Constant Problem, Rev. Mod. Phys., 61, 1-23 (1989) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[7] S. Weinberg, Critical phenomena for field theorists, in Proceedings of the International School of Subnuclear Physics, Ettore Majorana Center for scientific culture, Erice, Italy, 24-26 July 1976, pp. 1-52. · doi:10.1007/978-1-4684-0931-4_1
[8] Hamber, Herbert W., Quantum Gravity on the Lattice, Gen. Rel. Grav., 41, 817-876 (2009) · Zbl 1177.83006 · doi:10.1007/s10714-009-0769-y
[9] Ambjorn, Jan; Jurkiewicz, Jerzy, Four-dimensional simplicial quantum gravity, Phys. Lett. B, 278, 42-50 (1992) · doi:10.1016/0370-2693(92)90709-D
[10] Catterall, S.; Kogut, John B.; Renken, R., Phase structure of four-dimensional simplicial quantum gravity, Phys. Lett. B, 328, 277-283 (1994) · doi:10.1016/0370-2693(94)91480-X
[11] Bialas, P.; Burda, Z.; Krzywicki, A.; Petersson, B., Focusing on the fixed point of 4-D simplicial gravity, Nucl. Phys. B, 472, 293-308 (1996) · doi:10.1016/0550-3213(96)00214-3
[12] Reuter, M., Nonperturbative evolution equation for quantum gravity, Phys. Rev. D, 57, 971-985 (1998) · doi:10.1103/PhysRevD.57.971
[13] Arkani-Hamed, Nima; Motl, Lubos; Nicolis, Alberto; Vafa, Cumrun, The String landscape, black holes and gravity as the weakest force, JHEP, 06, 060 (2007) · doi:10.1088/1126-6708/2007/06/060
[14] Strominger, Andrew; Vafa, Cumrun, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B, 379, 99-104 (1996) · Zbl 1376.83026 · doi:10.1016/0370-2693(96)00345-0
[15] Kaplan, Jared; Kundu, Sandipan, Closed Strings and Weak Gravity from Higher-Spin Causality, JHEP, 02, 145 (2021) · Zbl 1460.83033 · doi:10.1007/JHEP02(2021)145
[16] Parisi, G.; Sourlas, N., Random Magnetic Fields, Supersymmetry and Negative Dimensions, Phys. Rev. Lett., 43, 744 (1979) · doi:10.1103/PhysRevLett.43.744
[17] Polyakov, Alexander M.; Khalatnikov, I. M.; Mineev, V. P., Quantum Geometry of Bosonic Strings, Phys. Lett. B, 103, 207-210 (1981) · doi:10.1016/0370-2693(81)90743-7
[18] Knizhnik, V. G.; Polyakov, Alexander M.; Zamolodchikov, A. B.; Khalatnikov, I. M.; Mineev, V. P., Fractal Structure of 2D Quantum Gravity, Mod. Phys. Lett. A, 3, 819 (1988) · doi:10.1142/S0217732388000982
[19] Regge, T., General relativity without coordinates, Nuovo Cim., 19, 558-571 (1961) · doi:10.1007/BF02733251
[20] J.A. Wheeler, Geometrodynamics and the Issue of the Final State, in Relativity Groups and Topology, Les Houches Lecture Notes (1963). · Zbl 0148.46204
[21] Hamber, Herbert W., On the gravitational scaling dimensions, Phys. Rev. D, 61 (2000) · doi:10.1103/PhysRevD.61.124008
[22] Unruh, W. G., Notes on black hole evaporation, Phys. Rev. D, 14, 870 (1976) · doi:10.1103/PhysRevD.14.870
[23] B. DeWitt, Quantum gravity, the new synthesis, in General Relativity: An Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press (1979), pp. 680-745. · Zbl 0424.53001
[24] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General Relativity: An Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press (1979), pp. 790-832. · Zbl 0424.53001
[25] Kawai, Hikaru; Ninomiya, Masao, Renormalization Group and Quantum Gravity, Nucl. Phys. B, 336, 115-145 (1990) · doi:10.1016/0550-3213(90)90345-E
[26] Aida, Toshiaki; Kitazawa, Yoshihisa; Nishimura, Jun; Tsuchiya, Asato, Two loop renormalization in quantum gravity near two-dimensions, Nucl. Phys. B, 444, 353-380 (1995) · doi:10.1016/0550-3213(95)00071-Y
[27] Hamber, Herbert W.; Williams, Ruth M., Higher derivative quantum gravity on a simplicial lattice, Nucl. Phys. B, 248, 392-414 (1984) · doi:10.1016/0550-3213(84)90603-5
[28] Hamber, Herbert W.; Williams, Ruth M., Nonperturbative simplicial quantum gravity, Phys. Lett. B, 157, 368-374 (1985) · doi:10.1016/0370-2693(85)90382-X
[29] Hamber, Herbert W.; Williams, Ruth M., Gauge invariance in simplicial gravity, Nucl. Phys. B, 487, 345-408 (1997) · Zbl 0925.83011 · doi:10.1016/S0550-3213(97)87467-6
[30] Hamber, Herbert W.; Williams, Ruth M., Non-perturbative gravity and the spin of the lattice graviton, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.124007
[31] Berg, B., Exploratory numerical study of discrete quantum gravity, Phys. Rev. Lett., 55, 904-907 (1985) · doi:10.1103/PhysRevLett.55.904
[32] Starobinsky, Alexei A.; Khalatnikov, I. M.; Mineev, V. P., A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B, 91, 99-102 (1980) · Zbl 1371.83222 · doi:10.1016/0370-2693(80)90670-X
[33] Barrow, John D.; Cotsakis, S., Inflation and the Conformal Structure of Higher Order Gravity Theories, Phys. Lett. B, 214, 515-518 (1988) · doi:10.1016/0370-2693(88)90110-4
[34] De Felice, Antonio; Tsujikawa, Shinji, f(R) theories, Living Rev. Rel., 13, 3 (2010) · Zbl 1215.83005 · doi:10.12942/lrr-2010-3
[35] Barvinsky, A. O.; Kamenshchik, A. Yu., Quantum scale of inflation and particle physics of the early universe, Phys. Lett. B, 332, 270-276 (1994) · doi:10.1016/0370-2693(94)91253-X
[36] Barvinsky, A. O.; Kamenshchik, A. Yu.; Starobinsky, A. A., Inflation scenario via the Standard Model Higgs boson and LHC, JCAP, 11 (2008) · doi:10.1088/1475-7516/2008/11/021
[37] Bezrukov, Fedor L.; Shaposhnikov, Mikhail, The Standard Model Higgs boson as the inflaton, Phys. Lett. B, 659, 703-706 (2008) · doi:10.1016/j.physletb.2007.11.072
[38] A.A. Starobinsky, Stochastic de sitter (inflationary) stage in the early universe, in Field theory, quantum gravity and strings, Berlin, Germany: Springer (1988), pp. 107-126. · doi:10.1007/3-540-16452-9_6
[39] Sasaki, Misao; Nambu, Yasusada; Nakao, Ken-ichi, Classical Behavior of a Scalar Field in the Inflationary Universe, Nucl. Phys. B, 308, 868-884 (1988) · doi:10.1016/0550-3213(88)90132-0
[40] Nambu, Yasusada; Sasaki, Misao, Stochastic Approach to Chaotic Inflation and the Distribution of Universes, Phys. Lett. B, 219, 240-246 (1989) · doi:10.1016/0370-2693(89)90385-7
[41] Starobinsky, Alexei A.; Yokoyama, Junichi, Equilibrium state of a selfinteracting scalar field in the De Sitter background, Phys. Rev. D, 50, 6357-6368 (1994) · doi:10.1103/PhysRevD.50.6357
[42] Rey, Soo-Jong, Dynamics of Inflationary Phase Transition, Nucl. Phys. B, 284, 706-728 (1987) · doi:10.1016/0550-3213(87)90058-7
[43] Hosoya, Akio; Morikawa, Masahiro; Nakayama, Keiji, Stochastic Dynamics of Scalar Field in the Inflationary Universe, Int. J. Mod. Phys. A, 4, 2613 (1989) · doi:10.1142/S0217751X89001011
[44] Graziani, F. R., Quantum Probability Distributions in the Early Universe. 1. Equilibrium Properties of the Wigner Equation, Phys. Rev. D, 38, 1122 (1988) · doi:10.1103/PhysRevD.38.1122
[45] Lawrie, Ian D., Perturbative Description of Dissipation in Nonequilibrium Field Theory, Phys. Rev. D, 40, 3330 (1989) · doi:10.1103/PhysRevD.40.3330
[46] Castellani, V.; Degl’Innocenti, S.; Prada Moroni, P. G.; Tordiglione, V., Hipparcos open clusters and stellar evolution, Mon. Not. Roy. Astron. Soc., 334, 193 (2002) · doi:10.1046/j.1365-8711.2002.05508.x
[47] Enqvist, K.; Nurmi, S.; Podolsky, D.; Rigopoulos, G. I., On the divergences of inflationary superhorizon perturbations, JCAP, 04 (2008) · doi:10.1088/1475-7516/2008/04/025
[48] Podolsky, Dmitry I., On Triviality of λϕ^4 Quantum Field Theory in Four Dimensions (2010)
[49] Podolskiy, Dmitriy; Lanza, Robert, On decoherence in quantum gravity, Annalen Phys., 528, 663-676 (2016) · Zbl 1356.81221 · doi:10.1002/andp.201600011
[50] Podolskiy, Dmitriy, Microscopic origin of de Sitter entropy (2018)
[51] Pattison, Chris; Vennin, Vincent; Assadullahi, Hooshyar; Wands, David, Stochastic inflation beyond slow roll, JCAP, 07 (2019) · Zbl 1515.83170 · doi:10.1088/1475-7516/2019/07/031
[52] Polyakov, A. M., Infrared instability of the de Sitter space (2012)
[53] C. Itzykson and J.M. Drouffe, Statistical Field Theory. Cambridge University Press, Cambridge, U.K. (1989). · Zbl 0825.81001
[54] V.V. Slezov, Kinetics of First-Order Phase Transitions, Wiley-VCH Verlag GmbH amp; Co. KGaA, Weigheim, Germany (2009).
[55] Aizenman, Michael, Geometric Analysis of ϕ^4 Fields and Ising Models (Parts 1 & 2), Commun. Math. Phys., 86, 1 (1982) · Zbl 0533.58034 · doi:10.1007/BF01205659
[56] Aizenman, M., On the renormalized coupling constant and the susceptibility in ϕ^4 in four-dimensions field theory and the Ising model in four-dimensions, Nucl. Phys. B, 225, 261-288 (1983) · doi:10.1016/0550-3213(83)90053-6
[57] Zurek, W. H., Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse?, Phys. Rev. D, 24, 1516-1525 (1981) · doi:10.1103/PhysRevD.24.1516
[58] Zurek, Wojciech Hubert, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., 75, 715-775 (2003) · Zbl 1205.81031 · doi:10.1103/RevModPhys.75.715
[59] Fytas, N. G.; Martín-Mayor, V.; Picco, M.; Sourlas, N., Specific-heat exponent and modified hyperscaling in the 4D random-field Ising model, J. Stat. Mech., 1703 (2017) · doi:10.1088/1742-5468/aa5dc3
[60] N.G. Fytas and V. Martín-Mayor, Universality in the Three-Dimensional Random-Field Ising Model, Phys. Rev. Lett.110 (2013) 227201 [Erratum ibid. 111 (2013) 019903; Erratum ibid. 111 (2013) 119903]. · doi:10.1103/PhysRevLett.110.227201
[61] N.G. Fytas, V. Martín-Mayor, M. Picco and N. Sourlas, Phase Transitions in Disordered Systems: The Example of the Random-Field Ising Model in Four Dimensions, Phys. Rev. Lett.116 (2016) 227201. · Zbl 1401.82012 · doi:10.1103/PhysRevLett.116.227201
[62] Fytas, Nikolaos G.; Martin-Mayor, Victor; Picco, Marco; Sourlas, Nicolas, Restoration of Dimensional Reduction in the Random-Field Ising Model at Five Dimensions, Phys. Rev. E, 95 (2017) · Zbl 1401.82012 · doi:10.1103/PhysRevE.95.042117
[63] Fisher, Daniel S., Scaling and critical slowing down in random-field Ising systems, Phys. Rev. Lett., 56, 416-419 (1986) · doi:10.1103/PhysRevLett.56.416
[64] J.C. Angles d’Auriac, M. Preissmann and R. Rammal, The random field Ising model: algorithmic complexity and phase transition, J. Phys. Lett.46 (1985) 173.
[65] A. Goldberg and R. Tarjan, Solving minimum-cost flow problems by successive approximation, in Proceedings of the nineteenth annual ACM conference on Theory of computing — STOC ’87, New York, U.S.A., 1987, pp. 7-18. · doi:10.1145/28395.28397
[66] Balian, R.; Drouffe, J. M.; Itzykson, C.; Julve, J.; Ramón-Medrano, M., Gauge Fields on a Lattice. 2. Gauge Invariant Ising Model, Phys. Rev. D, 11, 2098 (1975) · doi:10.1103/PhysRevD.11.2098
[67] Creutz, Michael; Julve, J.; Ramón-Medrano, M., Phase Diagrams for Coupled Spin Gauge Systems, Phys. Rev. D, 21, 1006 (1980) · doi:10.1103/PhysRevD.21.1006
[68] Kehl, E.; Satz, H.; Waltl, B., Critical Exponents of Z_2 gauge theory in (3+1)-dimensions, Nucl. Phys. B, 305, 324-337 (1988) · doi:10.1016/0550-3213(88)90299-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.