×

A scattering theory approach to Cauchy horizon instability and applications to mass inflation. (English) Zbl 1521.83136

Summary: Motivated by the strong cosmic censorship conjecture, we study the linear scalar wave equation in the interior of subextremal strictly charged Reissner-Nordström black holes by analyzing a suitably defined “scattering map” at 0 frequency. The method can already be demonstrated in the case of spherically symmetric scalar waves on Reissner-Nordström: we show that assuming suitable \((L^2\)-averaged) upper and lower bounds on the event horizon, one can prove \((L^2\)-averaged) polynomial lower bound for the solution
(1)
on any radial null hypersurface transversally intersecting the Cauchy horizon, and
(2)
along the Cauchy horizon toward timelike infinity.
Taken together with known results regarding solutions to the wave equation in the exterior, (1) above in particular provides yet another proof of the linear instability of the Reissner-Nordström Cauchy horizon. As an application of (2) above, we prove a conditional mass inflation result for a nonlinear system, namely the Einstein-Maxwell-(real)-scalar field system in spherical symmetry. For this model, it is known that for a generic class of Cauchy data \(\mathcal{G}\), the maximal globally hyperbolic future developments are \(C^2\)-future-inextendible. We prove that if a (conjectural) improved decay result holds in the exterior region, then for the maximal globally hyperbolic developments arising from initial data in \(\mathcal{G}\), the Hawking mass blows up identically on the Cauchy horizon.

MSC:

83C57 Black holes
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
83E05 Geometrodynamics and the holographic principle
81V22 Unified quantum theories
32S25 Complex surface and hypersurface singularities
83C22 Einstein-Maxwell equations
81U90 Particle decays
58J47 Propagation of singularities; initial value problems on manifolds

References:

[1] Angelopoulos, Y.; Aretakis, S.; Gajic, D., Late-time asymptotics for the wave equation on extremal Reissner-Nordström backgrounds, Adv. Math., 375 (2020) · Zbl 1453.83002 · doi:10.1016/j.aim.2020.107363
[2] Chandrasekhar, S.; Hartle, JB, On crossing the Cauchy horizon of a Reissner-Nördstrom black-hole, Proc. R. Soc. Lond. A, 384, 1787, 301-315 (1982) · Zbl 0942.83507 · doi:10.1098/rspa.1982.0160
[3] Dafermos, M., Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations, Ann. Math., 158, 3, 875-928 (2003) · Zbl 1055.83002 · doi:10.4007/annals.2003.158.875
[4] Dafermos, M., The interior of charged black holes and the problem of uniqueness in general relativity, Commun. Pure Appl. Math., 58, 4, 445-504 (2005) · Zbl 1071.83037 · doi:10.1002/cpa.20071
[5] Dafermos, M., Black holes without spacelike singularities, Commun. Math. Phys., 332, 729-757 (2014) · Zbl 1301.83021 · doi:10.1007/s00220-014-2063-4
[6] Dafermos, M., Luk, J.: The interior of dynamical vacuum black holes I: the \(C^0\) Stability of the Kerr Cauchy horizon. arXiv:1710.01722, preprint (2017)
[7] Dafermos, M.; Rodnianski, I., A proof of Price’s law for the collapse of a self-gravitating scalar field, Invent. Math., 162, 2, 381-457 (2005) · Zbl 1088.83008 · doi:10.1007/s00222-005-0450-3
[8] Dafermos, M.; Rodnianski, I., The red-shift effect and radiation decay on black hole spacetimes, Commun. Pure Appl. Math., 62, 7, 859-919 (2009) · Zbl 1169.83008 · doi:10.1002/cpa.20281
[9] Dafermos, M.; Shlapentokh-Rothman, Y., Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes, Commun. Math. Phys., 350, 3, 985-1016 (2017) · Zbl 1360.83030 · doi:10.1007/s00220-016-2771-z
[10] Franzen, AT, Boundedness of massless scalar waves on Reissner-Nordström interior backgrounds, Commun. Math. Phys., 343, 2, 601-650 (2016) · Zbl 1342.35386 · doi:10.1007/s00220-015-2440-7
[11] Franzen, AT, Boundedness of massless scalar waves on Kerr interior backgrounds, Ann. Henri Poincaré, 21, 4, 1045-1111 (2020) · Zbl 1435.83082 · doi:10.1007/s00023-020-00900-w
[12] Gleeson, E.: Linear instability of the Reissner-Nordström Cauchy Horizon. Master’s thesis, University of Cambridge, arXiv:1701.06668 (2017)
[13] Gursel, Y.; Sandberg, V.; Novikov, I.; Starobinsky, A., Evolution of scalar perturbations near the Cauchy horizon of a charged black hole, Phys. Rev. D, 19, 413-420 (1979) · doi:10.1103/PhysRevD.19.413
[14] Hintz, P., Boundedness and decay of scalar waves at the Cauchy horizon of the Kerr spacetime, Comment. Math. Helv., 92, 4, 801-837 (2017) · Zbl 1379.58011 · doi:10.4171/CMH/425
[15] Hintz, P.: A sharp version of Price’s law for wave decay on asymptotically flat spacetimes. arXiv:2004.01664, preprint (2020)
[16] Hiscock, WA, Evolution of the interior of a charged black hole, Phys. Rev. Lett., 83A, 110-112 (1981) · doi:10.1016/0375-9601(81)90508-9
[17] Kehle, C.: Diophantine approximation as Cosmic Censor for Kerr-AdS black holes. arXiv:2007.12614, preprint (2020) · Zbl 1513.83017
[18] Kehle, C.; Shlapentokh-Rothman, Y., A scattering theory for linear waves on the interior of Reissner-Nordström black holes, Ann. Henri Poincaré, 20, 5, 1583-1650 (2019) · Zbl 1419.83038 · doi:10.1007/s00023-019-00760-z
[19] Kehle, C., Van de Moortel, M.: Strong Cosmic Censorship in the presence of matter: the decisive effect of horizon oscillations on the black hole interior geometry. arXiv:2105.04604, preprint (2021)
[20] Kommemi, J., The global structure of spherically symmetric charged scalar field spacetimes, Commun. Math. Phys., 323, 1, 35-106 (2013) · Zbl 1275.83002 · doi:10.1007/s00220-013-1759-1
[21] Luk, J.; Sung-Jin, O., Proof of linear instability of the Reissner-Nordström Cauchy horizon under scalar perturbations, Duke Math. J., 166, 3, 437-493 (2017) · Zbl 1373.35306 · doi:10.1215/00127094-3715189
[22] Luk, J.; Oh, S-J, Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I. The interior of the black hole region, Ann. Math., 190, 1, 1-111 (2019) · Zbl 1429.83046 · doi:10.4007/annals.2019.190.1.1
[23] Luk, J.; Oh, S-J, Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data II: the exterior of the black hole region, Ann. PDE, 5, 1, 1-194 (2019) · Zbl 1428.35588 · doi:10.1007/s40818-019-0062-7
[24] Luk, J.; Sbierski, J., Instability results for the wave equation in the interior of Kerr black holes, J. Funct. Anal., 271, 7, 1948-1995 (2016) · Zbl 1346.83044 · doi:10.1016/j.jfa.2016.06.013
[25] McNamara, J., Instability of black hole inner horizons, Proc. R. Soc. Lon. A, 358, 499-517 (1978) · doi:10.1098/rspa.1978.0024
[26] McNamara, JM, Behaviour of scalar perturbations of a Reissner-Nordström black hole inside the event horizon, Proc. R. Soc. A., 364, 121-134 (1978)
[27] Penrose, R.: Gravitational collapse. In: Dewitt-Morette, C. (eds.) Gravitational Radiation and Gravitational Collapse, Volume 64 of IAU Symposium, pp. 82-91. Springer (1974)
[28] Poisson, E.; Israel, W., Inner-horizon instability and mass inflation in black holes, Phys. Rev. Lett., 63, 1663-1666 (1989) · doi:10.1103/PhysRevLett.63.1663
[29] Poisson, E.; Israel, W., Internal structure of black holes, Phys. Rev. D, 41, 1796-1809 (1990) · doi:10.1103/PhysRevD.41.1796
[30] Sbierski, J.: On the initial value problem in general relativity and wave propagation in black-hole spacetimes. Ph.D. thesis (2014)
[31] Sbierski, J.: The \(C^0\)-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry, preprint (2015)
[32] Sbierski, J.: Instability of the Kerr Cauchy horizon under linearised gravitational perturbations, preprint (2022)
[33] Sbierski, J.: On holonomy singularities in general relativity and the \({C}^{0,1}_{loc}\)-inextendibility of spacetimes. arXiv:2007.12049, preprint (2020)
[34] Van de Moortel, M.: Decay of weakly charged solutions for the spherically symmetric Maxwell-charged-scalar-field equations on a Reissner-Nordstrom exterior space-time. Annales Scientifiques de l’École Normale Supérieure. arXiv:1804.04297 (2017) · Zbl 1513.83013
[35] Van de Moortel, M., Stability and instability of the sub-extremal Reissner-Nordström black hole interior for the Einstein-Maxwell-Klein-Gordon equations in spherical symmetry, Commun. Math. Phys., 360, 1, 103-168 (2018) · Zbl 1394.83008 · doi:10.1007/s00220-017-3079-3
[36] Van de Moortel, M.: The breakdown of weak null singularities inside black holes. arXiv:1912.10890, preprint (2019)
[37] Van de Moortel, M.: Mass inflation and the \({C}^2\)-inextendibility of spherically symmetric charged scalar field dynamical black holes. Commun. Math. Phys. arXiv:2001.11156, preprint (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.